
Motorola Free Ware Cross Assemblers
release TER_2.0

1.0 COPY RIGHT NOTICE

You may not distribute these cross assemblers and charge more than a
nominal fee for the distribution media itself. This software is the
property of Motorola and is made available as free ware for the purpose of
developing software for their microprocessors only. "Free Ware" means that
no charge is made for copying or for the use of computer software but that
all other rights including but not limited to use of the software in whole
or in part in other programs remains with Motorola. Software means the
source code and all versions of object code or computer coded instructions
in whole or in part. All copies must carry this notice.

1.1 Disclaimer

The cross assemblers are supplied "as is" without warranty of any kind
expressed or implied. They are believed to be accurate but the user takes
upon him or herself the entire responsibility and consequences of their
use. Neither Motorola nor any of the contributing authors warrant that the
software is without errors, will operate without interruption or will be
compatible with any software or hardware possessed or to be possessed by
the user or that the use of the software or any of its parts will result in
any economic advantage or reduction in cost. Neither Motorola nor any of
the contributing authors will be liable for any special or incidental or
consequential damages, even if informed of the possibility of such damages
in advance.

1.2 Contributing Authors

Original Code E.J. Rupp 12/11/84

Releases beginning with TER Terry E. Rogers
(modifications & manual only) 6255 Henryk Woods Rd.

Clay, New York 13041

Note: This software is a direct descendant of the E.J. Rupp version.
Other versions may exist.

 page -1-

_

2.0 INDEX

1.0 Copy right notice & Disclaimer
2.0 Index
3.0 General
 3.1 Assemblers (page 4)
 3.2 Command Line Format & Options
 3.3 Compatibility with previous versions (page 6)
 3.4 Compatibility between host DOS systems and support equipment
4.0 Assembler Source Code Format
 4.1 Labels & Symbols (page 7)
 4.2 Opcode (page 9)
 4.3 Operand
 4.3.1 Constants
 4.3.2 Symbols (page 10)
 4.3.3 Expressions (page 11)
5.0 Pseudo Opcodes
 5.1 List of Pseudo Opcodes (page 12)
 5.2 Symbol value assignment; EQU
 5.3 Memory allocation & definition; (page 13)

 ORG, FCC, FDB, FCB, RMB, ZMB, BSZ, FILL
 5.4 Conditional Assembly & Include Files; (page 16)

IFD, IFND, ELSE, ENDIF, END, INCLUDE
 5.5 Listing Control; (page 19) PAGE, OPT
 paging, symbol tables, cycle count
 5.6 Program Counter control; CODE, DATA, BSS, RAM, AUTO
 5.7 Ignored; (page 20) SPC, TTL, NAME
6.0 Target Machine Specifics
 6.1 6800
 6.2 6801
 6.3 6804
 6.4 6805
 6.5 6809
 6.6 68HC11 (page 21)
7.0 Limitations & Errors
 7.1 File & Symbol Table Size (page 22)
 7.2 Symbol Names
 7.3 Lost & Locked Files
 7.4 Phasing (pass 2 symbol value)
 7.5 Error Listings (page 23)
 7.6 Warning Listings (page 24)
 7.7 Fatal Error Listings (page 25)

 page -2-

_

8.0 Host Specifics
 8.1 MS-DOS PCs
 8.2 Apple MAC (page 26)
 8.3 Commodore Amiga
 8.3.1 Shell & CLI
 8.3.2 WorkBench
9.0 Formats
 9.1 Symbol Table (page 28)
 9.2 Cross Reference Table
 9.3 Listing
10.0 Some Techniques (page 29)
11.0 Updates & Error Reporting (page 34)

 page -3-

_

3.0 GENERAL

3.1 Assemblers

These assemblers are updated versions of the original, two pass Motorola 8
bit uC/uP free ware cross assemblers. The assemblers are named as* where
'*' is any of 0,1,4,5,9 or 11. On MS-DOS systems, the assemblers have the
extension .EXE. Other systems do not have extensions.

 Example: AS11 Amiga or MAC 68HC11 cross assembler
 AS11.EXE MS-DOS 68HC11 cross assembler

Amiga versions have companion *. info files where * is here as5, as11 etc.
The .info files are for WorkBench visibility. Amiga versions may also
include scripts and companion *. info files titled "Assemble 68HC11" e.g.
which endow the assemblers with extended WorkBench selection of source code
files. This manual, updates and other documentation have the extension
*.doc on all systems. *. doc files are linked to system ASCII readers at
GUI (graphic user interface) level on the MAC and Amiga. (WorkBench is the
Amiga GUI super application program analogous to MAC DeskTop.) See section
8 for host OS specifics.

The file Update.doc (if any) contains enhancement descriptions.

3.2 Command Line Format and Options

The following pertains to MS-DOS and Amiga systems. The MAC does not have
a command line user interface.

The command line looks like this :

 as* file1 [file2] ... [- option1 option2 ...]

 Where:
 as* is one of the assemblers mentioned above
 file<n>is an assembler source code file name complete with path
 (if not in current directory) in the host DOS format
 option<n>
 is a UNIX like assembler option or command

file1, file2, file<n> are command line files as opposed to include files
(there are subtle differences). One or more spaces separates as* from
file1, file1 from file2 etc. and file<n> from the minus sign preceding
option1 and option 1 from option2 etc. At least one assembler source code
file is required. Options are, of course, not required.

 page -4-

_

file<n> may have the extension *. asm on all systems. Any other extension
acceptable to the host DOS is also permitted. The file<n> files are
assembled together with file1[. asm] as if they were all one file (no
linking is performed and all symbols are global) to make file1.S19, a
Motorola S record output in the default directory. Source code files are
left intact.

file<n> must be in "flat ASCII", i.e. must contain only alphanumeric, tab
and end of line characters and must not contain formatting characters other
than tab. Many word processors will not produce a flat ASCII file even
using a "text only" store or ASCII conversion option. Form feeds and ANSI
console control characters will probably be present. Acceptable editors
available on many systems include EMACS, MEMACS, VEDIT, vii (UNIX), ED
(UNIX & AmigaDOS), EDIT (AmigaDOS), EDLIN (MS-DOS) and the integrated
editor in many MS-DOS, MAC and Amiga languages such as C, Compiled BASIC,
FORTRAN etc. There are many others. This is not a recommendation for any.

 Example:

 as5 BlackBox Serial -l cre

This command assembles files " BlackBox" and "Serial" using the 6805 cross
assembler with an output listing and a cross reference table producing S
record "BlackBox.S19" or "BLACKBOX.S19".
The assemblers accept options from the command line. These options are the
following:

l enable output listing.
nol disable output listing (default).
cre generate cross reference table.
s generate a symbol table.
c enable cycle count.
noc disable cycle count.
crlf enable <CR,LF> (non MS-DOS systems)
nnf number include files contiguous with command line files
p50 page break approximately every 50 lines

Command line options may not be combined as they may sometimes be in UNIX.
There is only one minus sign.

Listings, tables, error messages and warning messages are all directed to
std.out (standard output) which may vary between systems but is usually the
CRT console. Printed or file output typically must use "indirection" as
defined on that system. See section 8.

 page -5-

_

3.3 Compatibility with Previous Versions

The cross assemblers will accept source code files written for the original
cross assembler porting to the "IBM PC" (MS-DOS systems) on 4/13/87
providing that the files are supplied as command line arguments as shown
above. An "end" statement must be supplied as the last executable pseudo-
op to be used as an include file. A file so modified may be used with
either the original or this version provided no further changes are made.
("End" is an ignored pseudo-op in the original.)

Source code written using the added features in this version are not
compatible with the original.

3.4 Compatibility between Host DOS Systems and Support Equipment

MAC and Amiga versions of these cross assemblers will accept source files
originating on MS-DOS machines. MS-DOS versions will not accept source
code originating on MAC or Amigas without modification. The end of line
character on MS-DOS machines is <CR,LF> or $0D$0A. The end of line
character on the Amiga and MAC is <LF> or $0A only. The MAC and Amiga
versions search for both MS-DOS and their own EOL character. You may use
the search and replace features of the editors mentioned above (except the
embedded language editors) to replace EOLs for cross system compatibility.
Consult your manual for search and replace and "quote" character.

Some PROM burners, simulators and ROM manufacturers will not accept S1
records with a <LF> EOL character. Use option - crlf to change the S record
output only to MS-DOS <CR,LF> EOL format if using the MAC or Amiga. Other
output remains in the host (D)OS format.

4.0 ASSEMBLER SOURCE CODE FORMAT

The general source code format is:

 [<label>][:][...< Opcode>][...<Operand>] [... (; | *)][<comment>]
 or
 [; | *] <comment>
 or
 <...>
 (an Opcode is the Mnemonic)
 where:
 < a > means 'a' is a user supplied item
 [] means optional item
 a | b means either item a OR b is acceptable
 ... means blanks or blank line (actually any white space ' '|
 '\t' | '\n')

 page -6-

_

A label is optionally followed by a colon. A label may appear on a line by
itself. Labels are not required. White space is a required delimiter
where shown; even preceding comments. White space is a space, tab or new
line character. Empty lines are treated as comments. A line beginning
with '*' or ';' in the first column is also a comment line. A line having
';' as the first character, even if not in the first column, is a comment
line.

The operand is, of course, optional if the Opcode or Pseudo- Opcode does not
require it. Comments are preceded by ';' or '*" or just white space if it
can be unambiguously understood that what follows must be a comment. '*'
is handled in the same manner as in the previous cross assembler; a search
is made for '*' only in the first column on a line. If you make a mistake
and leave out the Operand when it's required or use '*' to introduce a
comment after a label, the rest of the line will be picked up as the
(Pseudo) Opcode or Operand and produce an error. However, ';' will
introduce a comment on any line at any point provided that white space is
immediately to the left. That is, ';' is not a delimiter for Opcodes etc.
Generally it's best to use ';' to introduce comments so as to avoid errors
and confusion with '*' when used in an expression (shown below).

4.1 Labels & Symbols

Symbol:

A string of characters with a non-initial digit. The string of
characters may be from the set:

 [a-z][A-Z]_.[0-9]$@

(. and _ count as non-digits). The '$' and '@' count as a digit to
avoid confusion with hexadecimal and octal constants. All characters of
a symbol are significant, with upper and lower case characters being
distinct. The maximum number of characters in a symbol is currently set at
15. Symbols have a integer value which may be zero.

A symbol ending in the character '@' is redefinable. That is, its value,
either an address or EQU value, may be altered without causing a redefined
symbol error. Note that in the cross reference and symbol table print outs
that only the most recent value will be printed.

A symbol is defined from the point in the file where it first occurs as a
label onward. Using a symbol as an Operand (forward reference) does not
define it. A symbol is logically "undefined" (but still may have a value)
at the beginning of each pass.

Label:

A symbol starting in the first column is a label and may optionally be
ended with a ':'. A label may appear on a line by itself and is then
interpreted as:

 page -7-

_

 Label: EQU *

(That is the value of the symbol is set to the value of the program
counter. See section 5.2.)

A label may also be a redefinable symbol. This is an alternative to local
symbols when working with large files if the label is "very local" so that
the programmer is able to be certain of the label value (address) when
assembled. Redefinable symbols should not be used as forward references
i.e. should not occur as an operand as in "BNE LOOP@" before LOOP@ is
defined. The following is correct.

 ldaa #$ ff
 loop@ ;busy loop #1
 deca
 bne loop@ ;branches to busy loop #1
 ldaa #$ ff
 loop@ ;busy loop #2
 deca
 bne loop@ ;branches to busy loop #2

The following will not cause an assembler error but will not do what you
expect. Redefinable symbols are not checked for phasing errors.

 cmpa #$3E
 beq loop@ ;branching into the unknown (actually a phasing
error)
 ldaa #0
 loop@: sba #$10 ;the branch will NOT go here
 ldaa #$FF
 loop@:
 deca ;it may go here instead (or even below this point)
 bne loop@

Check for this type of error if you get a branch out of range. Another
possible error is caused by conditional assembly and include files. Do not
nest INCLUDE <file> statements within loops using redefinable variables
(see section 5.4). They could branch into a redefinable with the same name
inside the include file. For example:

 loop@ ;might not branch here
 deca
 ifnd Data
 include < data.i>
 ;might branch in here instead
 endif
 beq loop@ ;branching who knows where

 page -8-

_

The problem is especially vexing if symbol Data is sometimes defined and
not during other assemblies.

4.2 Opcode (Mnemonic)

Mnemonic (Opcode): A symbol preceded by at least one whitespace
character. Upper case characters in this field are converted to lower
case before being checked as a legal mnemonic. Thus ` nop', `NOP' and even
`NoP' are recognized as the same mnemonic.

Note that register names that sometimes appear at the end of a mnemonic
(e.g. nega or stu) must not be separated by any whitespace characters.
Thus ` clra' means clear accumulator A, but that ` clr a' means clear
memory location `a'.

Mnemonics recognized are those listed in Motorola documentation for a
particular processor or micro-computer. See section 6.x for the machine
being used.

4.3 Operand

Operand: Follows mnemonic, separated by at least one whitespace
character. The contents of the operand field(s) is interpreted by
each instruction. In general, it may be a constant, symbol or an
expression. The assemblers use all after Opcode and before ';' as a
possible Operand(s).

4.3.1 Constants

Constants are constructed as:

 ' followed by ASCII character
 $ followed by hexadecimal constant
 @ followed by octal constant
 % followed by binary constant
 digit decimal constant

note: ASCII constant values are those of the host DOS or OS and may vary if
not the alphanumeric standards.

 page -9-

_

The following are legal constants.

 'A has value $41
 'a has value $61
 $F2 is 242 decimal
 $12EA is 4842 decimal
 @73 is 59 decimal
 %10110 is $16
 255 is $FF

 Example: ldaa #$FF

note: The cross assemblers do not check the validity of a constant and will
attempt to interpret errors with unpredictable results. 2F00 = 2 for
example. The assemblers usually will flag a constant too large for the
operation. However, the cross assembler itself may crash in a manner
dependent upon the host (D)OS if a constant is too large for the host CPU
type "int" in the C language.

4.3.2 Symbols

If the Operand is a symbol, the symbol value is used as the operand. The
symbol may be an address (label) or data value. For example:

 Max_Char = 10 ;input buffer length = value 10
 ROM EQU $E000 ;ROM address start = $E000
 ORG 0 ;RAM
 InBuf: ;input buffer
 RMB Max_Char ;reserve Max_Char=10 bytes
 ...
 ORG ROM ;change PC to ROM=$E000
 ...

The symbol may be redefinable in which case the current symbol value is
used. One example, "local" branch labels, was given in section 4.2. You
may also use redefinable symbols as operands for other operations such as
immediate data; again as an alternative to local symbols. You should use
some restraint and avoid nested include files between data definition and
use as described in section 4.2.

 page -10-

_

4.3.3 Expressions

Expressions may consist of symbols, constants or the character '*'
(denoting the current value of the program counter) joined together by one
of the operators: +-*/%&|^. The operators are the same as in C. The
entire expression is treated as one Operand field so no white space is
permitted in the expression.

Expression Operators

 + add
 - subtract
 * multiply
 / divide
 % remainder after division
 & bitwise and
 | bitwise or
 ^ bitwise exclusive-or

Special Expression Symbol

 * current value of PC

Expressions are evaluated left to right and there is no provision for
parenthesized expressions. Arithmetic is carried out in signed twos-
complement integer precision (16 bits MS-DOS, 32 bits on Amiga and MAC).

The following are legal expressions.

 $FF/ Max_Char (=25 decimal if Max_Char was 10 decimal)
 10+$FF/Max_Char
 (=26 decimal because 10 is added to 255 and the result, 265, is
 divided by 10)
 $ FF&Max_Char (=10 decimal)
 $ FF^Max_Char (=$F5)

The following is legal but perhaps not what you want.

 BigBuf EQU 250
 BufPtrInc EQU BigBuf / Max_Char

You may have expected BufPtrInc = 25 but its value will be 250 because "/
Max_Char" is considered a comment. White space is not permitted in an
expression.

 page -11-

_

5.0 PSEUDO OPCODES

Pseudo Opcodes must start in other than the first column, like other
mnemonics.

 <white space> <Pseudo-Op> [Operand(s)]

5.1 List of Pseudo Opcodes

The following Pseudo Opcodes are supported.

 ORG, FCC, FDB, FCB, EQU,= , RMB, BSZ, ZMB, FILL
 PAGE, INCLUDE, END, OPT, IFD, IFND, ELSE, ENDIF
 CODE, DATA, BSS, RAM and AUTO.

Note: Fxx, ZMB, BSZ, FILL pseudo- ops advance the PC and add bytes to the S
record. They are counted in the "total bytes" issued at the end of
assembly. RMB advances the PC only and is not counted in the "total
bytes." However, RMB does cause the current S record line to terminate and
begin a new line.

5.2 Symbol Value Assignment, Equivalence

 <label>[:] EQU <*| constant|symbol|expression>

EQU may be used to set a symbol to the value of the Operand which may be a
constant, symbol or expression. EQU causes the value of the PC to be over
printed by the value of the label (symbol) in the listing for convenience.
It does not affect the PC. "=" is an alternative for "EQU."

Examples:

 BigBuf EQU 250
 BufPtrInc EQU BigBuf/ Max_Char ;with no white space
 StartPtr = $0A+BufPtrInc

However, EQU * sets the label to the value of the current PC as in:

 Start EQU $E000
 ORG Start ;set PC to $E000, the value of Start
 MADD EQU * ;the value of MADD is $E000
 FADD EQU *

 page -12-

_

A redefinable symbol may appear on both sides of the EQU pseudo-op:

 X@ EQU $FF ;X@ = 255 decimal
 ldaa #10
 staa X@ ;stored 10 at address 255
 X@ EQU X@-5 ;X@ = 250 decimal
 staa X@ ;stored 10 at address 250

A symbol is defined from the point in the source file where it is first
used as a symbol with EQU (or alternately where the symbol is first used as
a label). Setting a redefinable symbol to value zero does not " undefine"
it. All symbols are logically "undefined" at the beginning of each pass
but may well carry a value from one pass to the next.

Caution: Equates for other than redefinable symbols that have forward
references cause Phasing Errors in Pass 2.

5.3 Memory Allocation & Definition
 ORG, FCC, FDB, FCB, RMB, ZMB, FILL

ORG <constant | symbol | expression>

ORG (originate) sets the PC (program counter) to the value of the operand.
There are no restrictions on how many times or where you may ORG. The
assemblers will not stop you from ORGing into address space that doesn't
exist on your processor or that doesn't make sense for the next operations.

Examples:

 Y_ROMAN EQU $E000
 ORG Y_ROMAN ;this is my personal favorite, sets PC=$E000
 ORG $E000 ;sets PC=$E000
 ASM EQU $E000
 ORG ASM+10 ;this is a close second, sets PC=$E00A

Caution: ORGing without properly defining the segment (CODE, DATA etc. if
you use these) may cause phasing errors on pass 2.

 page -13-

_

FCC '<ASCII characters>'

FCC (form constant characters) is used to sequentially place byte values of
a string of one or more ASCII characters into memory. Value means the
ASCII code itself. The value is that of the host system and so may vary if
not the standard alpha- numerics. The delimiter used is your choice. A '
character is shown above but the assemblers simply take the first character
in the string as the current delimiter which must appear again at the end
to avoid an error. So the format is actually:

 FCC < delim> <ASCII characters> < delim>

Examples:

 FCC 'No funds available!'
 FCC "Take all the money you want." ;much better
 FCC dNOT AN ERRORd

The first statement would produce the following listing if PC = $E000

 E000 4E 6F 20 66 75 6E
 64 73 20 61 76 61
 69 6C 61 62 6C 75
 21

A maximum of six hex bytes are printed per line in the listing, the rest
appearing on lines below.

FDB <word>[,<word>] [,...etc.]
 where <word> is < constant|symbol|expression>

FDB (form double bytes) is used to fill the memory with "long words" or 16
bit quantities. One could generate long word data tables or more likely,
jump vector tables. A word of data is optionally followed by another using
',' as delimiter. Spaces are not permitted but will not cause an error
during assembly, just termination of FDB.

Examples:

 FDB 1 ;fills word with $0001
 FDB $E000,25,@674 ;mix constants
 FDB Start,Start+10,Start+20

The following does not cause and error but does not do what you want.

 FDB $E000 ,$E000+10
 ;just fills memory with $E000 skipping next term

 page -14-

_

FCB <byte> [,<byte>] [,...etc.]
 where <byte> is < constant|symbol|expression>

FCB (form constant bytes) is used to fill the memory with "short words" or
8 bit (byte) quantities. It's useful in the construction of data tables.
A byte is optionally followed by another using ',' as delimiter. Spaces
are not permitted in the data but will not cause an error, just termination
of FCB.

Examples:

 FCB 1 ;fills byte with $01
 FCB $FF,2,@17
 FCB 'A,'B,'C|$80,'D,'E|$80 ;parity table

The following does not cause an error but skips all but the first term.

 FCB $FF ,2,@17

RMB <constant|symbol|expression>

RMB (reserve memory bytes) is useful to mark RAM locations as being the
beginning of buffers, temporary tables, variables etc. It advances the PC
but does not place any data in the S record. The Operand contains the
number of bytes to advance the PC.

Examples:

SizeOfBuf EQU 128 ;128 characters max
Buf: ORG $10 ;Input buffer

RMB SizeOfBuf ;make buffer (advance 128 characters)
NOP ;PC=$90 for this instruction

Buf2: RMB SizeOfBuf*2 ;Buf2 is 256 l ong, PC=$91
NOP ;PC=$191
RMB 1000 ;big RAM! Advances PC by 1000 decimal

Scratch: RMB 1 ;one byte

ZMB <constant | symbol | expression>

BSZ <constant | symbol | expression>

ZMB (zero memory bytes) is similar to RMB except that in addition to
advancing the PC, zero value bytes are written to the S record and would
appear in a ROM if the S record is turned into firmware. Examples would be
similar to RMB. BSZ (block store zeros) has the identical function. The
user is left to think of a use for this pseudo-op.

 page -15-

_

FILL <value>,<byte_count>
 where <value> is <constant | symbol | expression>
 < byte_count> is <* | constant | symbol | expression>

FILL can be used to fill memory with something other than zeros. Beginning
at the current PC, memory is filled with < byte_count> number of bytes
having <value>. Spaces are not permitted in the operand. * stands for the
current value of the PC (be careful; could also be multiply depending upon
context).

Examples:

 FILL $A5,$10 ;ROM check ($A5 is repeated 16 times)
TopMem EQU $FFE0 ;highest memory location used short of jump
 vectors
 FILL CheckSymbol,TopMem-* ;fill out the rest of the ROM with a
 given byte

In the example above, CheckSymbol would fill up to but not including
location TopMem. The expression (TopMem-*) computes the number of bytes
left before TopMem by subtracting the current value of the PC indicated by
'*'.

5.4 Conditional Assembly and Include Files

INCLUDE <file>

 Include files have the following format:

 include < path:filename> ;comment
 or
 INCLUDE " path:file name" ;comment
 ...
 (include file lines)
 ...
 end

The pseudo op (key word) INCLUDE may be upper or lower case, beginning in
any column except column one (reserved for labels). An included file name
must be surrounded by either < > or " " (brackets or quotes). A full path
name must be given; there is no option -<search path>. The path and file
names may each contain spaces or any printing character but this may not be
permitted except on the Amiga. AmigaDOS and most others permit search
paths to be assigned in the calling script or batch file. Another method is
to always use the fictitious path name " assem_lib:" and ASSIGN assem_lib:
<path> in the calling script (AmigaDOS only). All DOS will search the
current directory first (unless re-set by user). A comment may follow the
include statement. Any delimiter or even none is acceptable but use ; or *
for future compatibility with semi-colon preferred because of its use in
other cross assemblers.

 page -16-

_

Each INCLUDE file must end with the pseudo op (key word) "end" (without
quotes). Each of the files given as command line arguments may finish with
"end" and it is best to do so as a matter of form. It has no effect,
however, and assembly will continue after that point with the next command
line file whereas assembly of an include file will terminate at "end."

The maximum number of nested include files open at one time is 30 including
the top level. The number of include files may be as large as the system
permits but they may not nest any further than 30 deep. Note: The
assembler does not deallocate memory used to store include file names until
the assembly process is finished. This could be a problem on MS-DOS
systems especially if very many include files are used. Command line file
names are not deallocated either but they may be handled differently.
Motorola 68000 series base PCs do not have these problems.

IFD/IFND/ELSE/ENDIF

Conditional assembly is possible using IFD (if defined) and IFND (if not
defined) pseudo operands and any symbol. The test determines only if the
mentioned symbol has been defined in an active block of code and does not
test or affect the value. The symbol value may be zero or any other value
and the symbol may or may not be used as a replacement symbol but it will
still test TRUE as IFD <symbol> if it has been defined at least once before
the test. Using the symbol as an operand does not define it. It must
appear beginning in column 1 of a line (label) for definition.

An active block of code is used by the assembler for code generation. An
active block is one which appears outside of an IF statement or is between
two IF/ELSE/ENDIF statements which test TRUE. The format is:

 IF[ND] <symbol>

 ; code, more IFs, comments and definitions

 ELSE

 ; code, more IFs, comments and definitions

 ENDIF

 page -17-

_

 The rules are:

 1) each IF[ND] must be matched with a corresponding ENDIF.

 2) ELSE causes a change of state from active to inactive
 or vice versa if part of an active IF[ND] block.

 3) IF[ND] blocks contained within an inactive block are defined
 as inactive in their entirety. ELSE does not cause a change
 of state.

 4) The matching ENDIF for an IF[ND] must occur in the same
 source file

 Examples:

 #1
 ifnd sysdat ; ifnd may be upper or lower case
 sysdat: ;define so that other files with same
 ;data will not call same include file
 include < sysdat.i>
 ;system constant declarations
 endif

 #2

 ifnd foo
 fee: EQU 2 ;this block is active (no foo before)
 foo: ;defining foo
 LDAA #2 ;and is assembled to S record
 NOP
 ifd fee
 ;fee was defined above
 STAA temp2 ;this block also active
 NOP
 else
 STAA temp1 ;this block not active & not assembled
 endif
 LDAB serial ;this block active
 endif
 STAB buffer ;this is always active & outside all if statements

 page -18-

_

5.5 Listing Control

Also see section 3.2 for command line options with the same effect.

PAGE

The pseudo-op PAGE causes a form feed and new page heading to be inserted
into the listing output. No operand is needed or accepted. You may also
use the "p50" option (command line or OPT) to automatically page the
listing. PAGE is still useful for placing include files etc. at the top of
a new page.

OPT <option>

 The OPT pseudo-op allows the following operands:

 nol Turn off o utput listing
 l Turn on output listing (default)
 noc Disable cycle counts in listing (default)
 c Enable cycle counts in listing (clear total cycles)
 contc Re-enable cycle counts (don't clear total cycles)
 cre Enable printing of a cross reference table
 s generate a symbol table
 crlf enable <CR,LF> (non MS-DOS systems)
 nnf number include files continuous with command line files
 p50 turn on page break every 50 lines approximately

Examples:

 OPT p50 ;turn on page breaks
 IFND Expand
 OPT nol ;disable include file listing
 ENDIF
 include < data.i>
 OPT l ;turn listing back on

5.6 Program Counter Control (Segment)

CODE

DATA

BSS

RAM

AUTO

 page -19-

_

PC control pseudo operands save and restore the PC effectively assigning
different code and data segments to different physical portions of the
memory. CODE, DATA, BSS and AUTO switch the assembler between four
different program counters which each may have their own ORG statements.
RAM is an equivalent for BSS (block storage segment). Although equivalent
in every way, the names are intended to convey the physical concepts of
CODE (ROM), DATA (ROM), static variable RAM and dynamic / scratch or
AUTOmatic ram. Typically, the user sets each PC to an initial value in a
global data file. E.g.

 CODE
 ORG $E000 ;set start of program ROM
 DATA
 ORG $F800 ;set start of data section of ROM
 BSS
 ORG $0000 ;set start of RAM

Then, as files are added or deleted during development or for different
configurations, the programmer marks each segment according to its purpose
and the assembler fills that physical memory from the last entry.
Normally, RMB statements only would occur in a BSS, RAM or AUTO segment for
the purpose of alloting RAM. AUTO is suggestive of use as a scratch data
PC and might be ORGed in every routine. However, the names are only
suggestive and may be used as the programmer desires.

5.7 Ignored Pseudo- Opcodes

These Pseudo Opcodes are ignored (cause no action including error).

 SPC Use blank lines instead
 TTL use `pr' to get headings and page numbers
 NAM[E] Did you ever use this one anyway?

6.0 TARGET MACHINE SPECIFICS

(as0) 6800:

Use for 6802 and 6808 too.

(as1) 6801:

You could use this one for the 6800 and avoid LSRD, ASLD, PULX, ABX,
PSHX, MUL, SUBD, ADDD, LDD and STD.

 page -20-

_

(as4) 6804:

The symbols 'a', 'x' and 'y' are predefined as $FF, $80 and $81
respectively. Also defined as 'A', 'X' and 'Y'. Because of
the 6804 architecture, this means that ' clr x' will work since the x
register is just a memory location. To use short-direct addressing,
the symbol involved must not be a forward reference (i.e. undefined)
and must be in the range $80-$83. Remember that bytes assembled in the
range $10-$7F will go into the data space; There is no program space ROM
for these locations.

The syntax for Register indirect addressing is as follows:

 mnemonic [<x>or<y>]

 an example is:
 lda [x]
 the comma ',' is not allowed.

The MVI instruction (move immediate) has its own format :

 mvi address,#data
 where address is an 8-bit address in page zero, and data is the
value to be written to
 specified location.

(as5) 6805:

There is no 'opt cmos' pseudo, so be careful not to use STOP or WAIT in a
program that is destined for an NMOS version of the 6805. The MUL
instruction should also be avoided on all versions of the 6805
except the C4. Cycle times are for the NMOS versions.

 (as9) 6809:

The SETDP pseudo-op is not implemented. Use the '>' and '<` operators to
force the size of operands.

For compatibility, CPX is equal to CMPX.

 (as11) 68HC11:

Bit manipulation operands are separated by blanks instead of commas
since the 'HC11 has bit manipulation instructions that operate on indexed
addresses.

 page -21-

_

7.0 LIMITATIONS AND ERRORS

7.1 File and Symbol Table Size

Source code and output data are stored in memory only line at a time only.
Therefore, there is practically no limitation on the size of the source
code except that imposed by the file storage media itself. Symbol
definitions and values are stored in memory. MS-DOS has room for somewhat
less than 2000 symbols of eight characters (the data requirements have been
increased over previous versions). Amiga and MACs are almost always 1 Meg
RAM or larger and so will have enough room for more than 5000 with room to
spare for other data and the O/S. MAC II/X and Amiga 2500 are essentially
unlimited.

The maximum number of nested include files is 30 (at one time).

7.2 Symbol Names

The maximum length of each symbol name is 15 characters.

7.3 Lost and Locked Files

Each source file is opened for reading and closed as required. Each file
is read twice, once each pass. It's possible that the media might be
removed or the file be otherwise made unavailable on the second pass. This
would generate a file opening error. Restart the assembly process if this
happens (find the lost file first!). With the Amiga and certain multi-
tasking versions of MS-DOS (windows), the user can create problems by
editing files during assembly. The editor may place a file lock on a
source code file (MEMACS doesn't) causing a file open error. Really
strange things can happen if the user changes a file between first and
second assembly passes which might not cause an assembly error notice. On
some systems, including the Amiga, you may be able to prevent this by
protecting and un-protecting the file using a script which also calls the
assembler (see "protect" and (D)OS manuals). File locks are not
implemented in the assembler for cross system compatibility.

An assembler crash may also leave a file lock on one of the source files.
See your (D)OS manual if this happens. Back up the source files!

7.4 Phasing Errors

A phasing error is reported if the value of a symbol is not the same on the
second pass as it was on the first pass. A forward reference using EQU
will cause a phasing error. However, no value checking is performed for
redefinable symbols. Be careful using redefinable symbols.

 page -22-

_

Bad Example:

BufPtr EQU NextVal ;but NextVal is not defined yet
...
NextVal EQU $A000
...
On the first pass, NextVal would be evaluated to zero and saved in BufPtr.
On the second pass NextVal would be $A000 which would not match the value
stored in BufPtr.

7.5 Error Listings

Error diagnostics are placed in the listing file just before the line
containing the error. Format of the error line is:

<file name>,Line_number: Description of error

Errors in pass one cause cancellation of pass two. Error messages are
meant to be self-explanatory. The file name precedes the error complete
with path.

The following is a listing of errors with some sparse comments where
required. You can add more notes as you make the mistakes.

Auto Inc/Dec by 1 or 2 only
Auto Inc/Dec Illegal on PC
Bad fill need second operand or missing comma
Bit Number must be 0-7 bit set or clear, only 8 bits on the port!
Branch out of Range can happen if label not defined (conditional
assembly?)
Can't do both! predec & postinc not both possible
Can't Pull S from S
Can't Pull U from U
Can't Push S on S
Can't Push U on U
EQU requires label
Error: ELSE without IF improper nesting?
Error: ENDIF without IF improper nesting?
Error: IFD/IFND nested too deep maximum of 30 include files active
Extended Addressing not allowed
Illegal Register for Indexed
 -this register doesn't have indexed addressing
Illegal Register Name
Illegal Symbol Name first character must be letter

 page -23-

_

Immediate Addressing Illegal
Immediate Operand Required
Indexed Addressing Required
Missing ']'
Missing ,
Missing Delimiter mismatching or no delimiter for FCC
No Auto Inc/Dec by 1 for Indirect
Offset must be Zero
Operand must be $80 or $81
PCR illegal here
Phasing Error did EQU with forward reference?
Register List Required
Register Name Required
Register Size Mismatch
Symbol Redefined only symbols ending in '@' may be redefined
Symbol table full -out of memory - try killing RAM: files or stopping

other tasks
Symbol undefined Pass 2 need at least one EQU or use as label
Syntax 6811 - got lost reading indexed addressing or bset/bclr - see manual
Undefined Operand during Pass One
Unknown Addressing Mode
Unrecognized Mnemonic spelling?
Unrecognized OPT spelling?

7.6 Warning Listing

<file name>,Line_number: Warning --- Description of error

Warnings do not cause cancellation of pass two but should cause you to
wonder where they came from.

Indexed Addressing Assumed
Missing ','
Missing ']'
No symbol for IFD presumed undefined
No symbol for IFND presumed undefined
Value truncated FCB needs value <=255 or other operand too big
warning: can't open INCLUDE file <file>

May not be an error depending upon usage. See section 10.

 page -24-

_

7.7 Fatal Error Listing

Some errors are classed as fatal and cause an immediate termination of
the assembly. These can be caused by loss of or mysterious change in a
source code or forward reference file.

Pseudo error real error - assembler is very lost in pseudo ops
Error in Mnemonic table assembler very lost in Mnem onic table
bitop addressing mode may not accept bit manipulation
Can't create temp file can't make file Fwd_ref; protected? disk out?
Forward ref file has gone

remove disk? lock file? Opened by another process or deleted?
Can't create object file previous S19 file protected? disk out?
Error: file ended before IFD/IFND/ELSE/ENDIF -no matching ENDIF for all IF[ND]
Can't get here from there assembler very lost in conditional assembly
Fatal Error: file ended before last ENDIF -can't carry conditional

statements to next file

8.0 HOST SPECIFICS

8.1 MS-DOS PCs

The assemblers are complete executable machine code files ending in *.EXE.
If using a hard disk system, it may be most convenient to place the
assemblers in use in the DOS directory which is probably C:\DOS so that
it's not necessary to change the search path each time you want to use
them. Regardless, the path should be set to the assemblers or the
assemblers should be in the working directory. PATH=C:\DOS is an example.
You can show the search path by typing just PATH.

Command line operation is exactly as explained above. You must use file
indirection to produce printed or saved listings.

 AS11 PROG.ASM SUB1.ASM SUB2.ASM -L CRE S >PRN:

Will assemble Prog, Sub1 and Sub2 to Prog.S19 with listing, cross reference
and symbol table output to the printer. You may replace PRN: with the name
of a file such as C:\WORK\DUMP.TXT and then COPY C:\WORK\DUMP.TXT PRN: at a
latter time. A batch file will be much more convenient for the long
assembly command line above. MS-DOS 3.x batch files will accept command
line arguments making the batch files much more flexible. You can read the
listing more conveniently at the CRT console if you use a "pipe" to "more"
which should be in the search path (C:\DOS?). E.g. "as11 myprog.asm -l |
more" where '|' is the pipe command. Hit <return> for the next screen.
The assemblers are interruptable (^C or <control> <break>) if anything goes
wrong rather than watch a long, useless listing.

If you do not have a hard disk system, make sure that there is enough room
on the default floppy disk for FWD_REF and *.S19 files and that the write
protect is off.

 page -25-

_

8.2 Apple MAC

Not available yet.

8.3 Commodore Amiga

The assemblers have no extension and are just as* such as as11. The Amiga
is multi-tasking. Memory can vanish on a small system if you start many
applications at once. The icon file supplied, as*.info is just for
convenience in moving the files about using WorkBench. The assemblers will
start by double clicking the icon but will shut down immediately because
they will find no command line arguments. The assemblers are not written to
accept messages from WorkBench. However, there are two other ways to run
transportable code on the Amiga. What follows presumes use of AmigaOS 1.3
or higher.

Shell/CLI

The CLI (Command Line Interface) window is a character based console
similar to MS-DOS. The command line arguments shown in this document will
work as shown. Shell is an improved version of CLI virtually identical to
UNIX "C Shell" or " Korn Shell." All CLI commands will work in Shell since
as in UNIX they are just files in the command directory. It may be
convenient if you copy the assemblers to directory c: (command) making them
just another AmigaDOS command. Otherwise it may be best to "protect as11
wd-" for example to eliminate the possibility of over writing or deleting
them. Alternately, make the assembler a resident DOS command using
"Resident < path:assembler>" It will be added to AmigaDOS. Do not set the
"pure" bit if you make the assembler resident. File and path names should
use AmigaDOS/UNIX conventions. Long file and path names with embedded
spaces are permitted. Use command line quotes around files having spaces:
as11 "New Program.asm" -l.

Unfortunately, the Amiga assemblers are not interruptable from the
dispatching Shell. It's preferred that you have two Shells open and that
if an assembly is producing unbreakable garbage, you go to the second Shell
and continue until the first finishes. Use " ChangeTaskPri 1" to get a
higher priority than the Shell running the failed assembler. Use the RAM:
disk to speed up floppy disk systems. If you use floppy disks, make sure
that the default directory is on a disk which is not write protected and
that *.S19 in use and Fwd_ref are not protected.

File indirection on the Amiga requires that indirection be given
immediately after the command. E.g. "as11 > prt: MyProg.asm -l cre". You
can substitute any device or file for prt:, even "speak:" if you want to
have the listing read aloud whilst your working on the bench! It's not
necessary to use "more" on the Amiga to stop and read a console listing.
Just hit space to stop the listing and <back space> to start it again.
However, you may pipe: to More if you want or redirect to ram:dump and read
that with More. There can be more than one pipe:, Shell and assembly going
at once.

 page -26-

_

Scripts and assembler source code editing can be done with MEMACS included
on the Utilities disk. MEMACS is virtually identical to EMACS available on
UNIX and described in most UNIX manuals. You can also assign directories
new temporary names, especially useful with a hard disk system.

Workbench:

You can also get the assemblers and all your scripts to operate from
Workbench by copying an icon to the script or writing them with NotePad
(must be in some visible directory then like your work directory and not
s:). Use WorkBench info to reset the default tool to Iconx (Icon Execute).
Double clicking the script icon will then execute the script, possibly
assembling your program with new version extension, protecting it and
sending it down to the EVM or PROM burner in one swell fwoop. The window
that opens up is a NEWCON: or Shell type window which accepts the <space
bar> <back space> scroll commands. The process behind the window is IconX
running execute. You can also get WorkBench to pass command line arguments
to a script file by using Iconx. However, IconX can be a little buggy
handing off more than one argument so it is much better to use Include
files to pick up other source code. It should still be possible to
assemble subroutines etc. using conditional assembly features to pick up
data as needed and thus work strictly from WorkBench using the assemblers.
An example script is:

 .Key file ;accepts one file
 echo "Assembling with listing"
 as11 <file> -l s ;this is just command line as before

Type in the above using NotePad (supplied with Amiga) and save in your
source code directory (perhaps as " DoIt"). Copy " DoIt.info" to source code
if necessary to give them icons as in "copy DoIt.info to Prg1.asm.info."
This will leave an Icon for the assembler script and source code as well.
Select the " DoIt" script Icon and use " info" from Workbench. Then change
the default tool to " c:IconX" and possibly delete Tool Types as well
changing it to some thing like "WINDOW=NEWCON:10/10/620/150/Assembler".
Select SAVE. You can pass a command line file to as11 by holding down the
shift key (extended selection) and selecting DoIt first then the assembly
(*.asm) file, double clicking the *. asm file. Consult the AmigaDOS and
Enhancer 1.3 manuals. If you use RAM: IconX will pass the name RAM DISK
which will get fragmented into two names; RAM (without colon) and DISK:
(with colon). You may want to "assign DISK: RAM:" in the above script.
The assembler will announce that it did not find file RAM but will go on to
discover all the source code anyway. Avoid using directory names with
spaces if working through IconX.

You can get editors that assign Icons automatically (MEMACS doesn't) and
that will permit you to execute scripts from within a window making
Motorola free ware cross assemblers a part of an "integrated" package.

 page -27-

_

9.0 TABLE FORMATS

9.1 Symbol Table

The format of the symbol table is:

 <label> <value>

where <label> is the symbol name in ascending, alphabetical order and
<value> is the value of that symbol in four place hex notation. The value
listed for redefinable symbols is the last value assigned.

9.2 Cross Reference Table

The format of the cross reference table is:

 <label> <value> *< definition_line> [<line1>] [<line2] [...etc.]

where <label> is the symbol name in ascending, alphabetical order and
<value> is the value of that symbol in four place hex notation. The value
listed for redefinable symbols is the last value assigned. The line number
marked * is that line where the symbol was defined. Subsequent line
numbers indicate where that symbol was used as an operand alone or in an
expression. Subsequent definitions of redefinable symbols will not be
listed.

Line numbers are those appearing in the listing. If include files are
numbered separately (default), then the line numbers refer to that include
file. Use command line option or OPT nnf to obtain sequential line numbers
if you do not want to guess which file the symbol is in.

9.3 Listing

The listing format is:

Assembler Release <release> <version> (once at beginning of assembly)
(c) Motorola (free ware)

 <file name> <page number> (each new page)

[error message]
<address> <code> <source line no.> <source line>
...
...
Program + Init Data = <byte size>
Error count = <no. of errors>

 page -28-

_

Error messages precede the line containing the error. Program + Init data
is the number of bytes placed in the S record. If this value is zero but
there are no errors, check conditional assembly statements to see if the
entire program was conditionally not assembled.

10.0 SOME TECHNIQUES

Most programmers now use top down structured design. It may be data or
procedurally oriented, or a combination of both; object oriented. Any of
these techniques breaks software design and coding into smaller, more
manageable modules. One would like to assemble and test the modules as
they are created. Obviously a linking, macro-assembler would be best, but
most of the features required are present in this assembler, especially for
the first two techniques.

Procedures / functions / subroutines can be assembled and tested apart from
any other if there is a mechanism to automatically incorporate global data
and drivers when assembling subroutines only (bottom up coding). For top
down coding, there should be a way to include the actual subroutines as
they are developed and dummy routines if they are not. Static and dynamic
(auto) data local to the subroutine should be allocated without conflict
with other routines taking into account memory partitioning in a (possibly)
firmware system.

Conditional assembly and include files may be used to control assembly as
software is developed. One technique is to define and test a symbol having
the same name as the file(s) to be included. E.g. if Global_Data is not
defined, then include < Global_Data.i>. Define the symbol Global_Data
within that file so that succeeding files which require that data will not
pick it up and cause a redefine error. You may want to include a
subroutine if it exists and a dummy subroutine if it does not. For this
reason, a failure to find an include file is a warning and not an error
(klutzy way of doing IF EXISTS). For example, you could include
<Output.asm> and then test symbol OUTPUT which would be defined in
Output.asm. IFND OUTPUT, then include < Dummy_Out.asm> (or something with a
shorter name on MS-DOS).

Static data and code can be added in sequence to the memory type required
(RAM or ROM) by using the pseudo- ops CODE, DATA and BSS (or RAM). These
three (segment) memory types should be set once using <segment> followed by
ORG <address>. After that, use just <segment> and the PC will be set to
the next available location in the appropriate area. A naming convention
can be used in place of local symbols. E.g. msg.main or msg_m for a symbol
in routine Main.asm.

Auto or dynamic memory (sometimes just called scratch memory) is more
difficult. Some dynamic storage is available using the stack but that is
often not enough or convenient. You could use names such as Scratch1,
Scratch2 etc. throughout, possibly setting local symbols equivalent as
needed. However, the AUTO segment PC is intended to suggest its use as a
local automatic or dynamic data PC. That is, use AUTO followed immediately
by ORG <address> to the area you have established as reusable or scratch.
Then immediately list the local symbols using RMB statements.

 page -29-

_

If you need more PCs than the four provided, you can manufacture more by
saving the current value with e.g. TempPC@ = * which will assign the
current PC value to the redefinable symbol (variable) TempPC@. You may
then ORG <address> and continue. When you are through, save your PC in
another variable and recover the old thus: ORG TempPC@.

Example

The following example is a demonstration of the assembler techniques
discussed above using AS11 assembler (not of a working piece of code). It
assembles properly; it has never been tested. The command line was "AS11
Main.asm -l cre". Files Global_Dat.i and Dum_Output.asm were picked up via
include statements. Global_Dat.i is needed by both Main and Dum_Output
assembly files. It's included conditionally so that if Dum_Output.asm
alone is assembled, it receives the global data. Output.asm is the name of
the final Output routine, not yet written.

Assembler release TER_2.0 version 2.09
(c) Motorola (free ware)
Main.asm, line no. 42: warning:can't open INCLUDE file Output.asm
0001 ;****************************
0002 ; Main.asm
0003 ;
0004 ; Main program
0005 ;****************************
0006
0007 IFND GLOB_DAT
0000 include < Global_Dat.i> ;pick up globals
0001 ;************************************
0002 ; Global_Dat.i
0003 ;
0004 ; Global Variables & Data
0005 ;***********************************
0006
0007 0001 GLOBAL_DAT EQU 1 ;to prevent further
 inclusion
0008
0009 OPT p50 ;page breaks
0010
0011 ;Memory Map
0012
0013 CODE
0014 E000 ORG $E000 ;set CODE
0015 DATA
0016 F800 ORG $F800 ;set data
0017 BSS
0018 0040 ORG 64 ;set static variable RAM
0019
0020
0021

 page -30-

_

0022 ;Global Definitions/Equates
0023
0024 0001 BYTE EQU 1
0025 0002 WORD EQU 2
0026 0002 APTR EQU 2
0027 0000 EOS EQU 0 ;end of string
0028
0029 ;Global Variables
0030
0031 0040 Acc1: RMB WORD
0032 0042 Acc2: RMB WORD
0033
Global_Dat.i
 page 2
0035 ;Global Structures
0036
0037 DATA ;set PC to data area
0038
0039 ;Device control register tables
0040 ; each entry is struct Hware where:
0041
0042 ; struct Hware definition
0043 0000 U_Limit EQU 0 ;upper limit
0044 0001 L_Limit EQU U_Limit+BYTE ;lower limit
0045 0002 HErr_Msg EQU L_Limit+BYTE ;*high error message
0046 0004 LErr_Msg EQU HErr_Msg+APTR ;*low error
 message
0047 0006 Handler EQU LErr_Msg+APTR ;*handler
0048 0008 SizeOfHware EQU Handler+APTR
0049
0050 Reg_Table: ; struct Hware(s) declaration
0051 F800 FF 0A FCB $FF,10 ; struct Hware Reg1
0052 F802 F8 19 F8 26 E0 27 FDB Vy_Low_Msg,High_Msg,Handler1
0053
0054 F808 64 00 FCB 100,0 ; struct Hware Reg2
0055 F80A F8 10 F8 26 E0 28 FDB Low_Msg,High_Msg,Handler2
0056
0057 ; etc.
0058
0059 ;Global Data
0060
0061 F810 54 6F 6F 20 6C 6F Low_Msg: FCC 'Too low!'
 77 21
0062 F818 00 FCB EOS
0063 F819 57 61 79 20 74 6F Vy_Low_Msg: FCC 'Way too low!'
 6F 20 6C 6F 77 21
0064 F825 00 FCB EOS
0065 F826 57 61 79 20 74 6F High_Msg: FCC 'Way too high!'
 6F 20 68 69 67 68
 21
0066 F833 00 FCB EOS
0067
0008 end
0009 ENDIF
0010

 page -31-

_

0011 CODE ;set PC to next code area
0012
0013 E000 B6 F8 34 Start: ldaa Reg_dat.m ;data for hardware
0014 E003 F6 F8 35 ldab First.m ;register #
0015 E006 BD E0 1C jsr Output
0016
0017 E009 F6 F8 36 ldab Second.m ; reg #
0018 E00C BD E0 1C jsr Output
0019
0020 E00F 86 FF ldaa #$FF ;nonsense busy loop
0021 E011 B7 00 00 staa Scratch1 ;to use RAM
0022 E014 7A 00 00 Loop@: dec Scratch1
0023 E017 26 FB bne Loop@
0024
0025 E019 7E E0 00 jmp Start ;get the cables, George

Main.asm page 3

0026
0027 ;local static data
0028
0029 DATA ;set PC to next data area
0030 F834 C8 Reg_dat.m: FCB #200 ;register data
0031 F835 00 First.m: FCB 0 ; reg nos.
0032 F836 01 Second.m: FCB 1
0033
0034 ;local dynamic data
0035
0036 AUTO
0037 0000 ORG 0 ;auto area
0038
0039 0000 Scratch1: RMB BYTE
0040 0001 Scratch2: RMB WORD
0041
Main.asm, line no. 42: warning:can't open INCLUDE file Output.asm
0042 include < Output.asm>
0043
0044 IFND OUTPUT
0000 include < Dum_Output.asm>
0001 ;***********************************
0002 ; Subroutine Dummy Output
0003 ;
0004 ; Send data where it belongs
0005 ;***********************************
0006
0007 IFND GLOBAL_DAT
0008 include < Global_Dat.i>
0009 ENDIF
0009 ENDIF
0010

 page -32-

_

0011 CODE ;get code PC back
0012
0013 E01C FE F8 00 Output: ldx Reg_Table ;get pointer to
 table
0014 E01F 36 psha ;save data
0015 E020 86 08 ldaa #SizeOfHware ;find offset
0016 E022 3D mul
0017 E023 3A abx ;add offset to pointer
0018 E024 32 pula ;recover data
0019 E025 6E 06 jmp Handler,x ; goto Handler
0020
0021 Handler1:
0022 ;do handling
0023 E027 39 rts
0024
0025 Handler2:
0026 ;do handling of second sort
0027 E028 39 rts
0028
0029 AUTO ; goto auto area

Dum_Output.asm page 4

0030 0000 ORG 0 ;same ORG cuz same area
0031
0032 0000 Itch1: RMB BYTE
0033 0001 Itch2: RMB BYTE
0034
0045 end
0046 ENDIF
0047
0048 end
Program + Init Data = 96 bytes
Error count = 0

APTR 0002 *0026 0046 0047 0048
Acc1 0040 *0031
Acc2 0042 *0032
BYTE 0001 *0024 0044 0045 0039 0032 0033
EOS 0000 *0027 0062 0064 0066
First.m F835 *0031 0014
GLOBAL_DAT 0001 *0007
HErr_Msg 0002 *0045 0046
Handler 0006 *0047 0048 0019
Handler1 E027 *0021 0052
Handler2 E028 *0025 0055
High_Msg F826 *0065 0052 0055
Itch1 0000 *0032
Itch2 0001 *0033
LErr_Msg 0004 *0046 0047
L_Limit 0001 *0044 0045
Loop@ E014 *0022 0023
Low_Msg F810 *0061 0055
Output E01C *0013 0015 0018
Reg_Table F800 *0050 0013
Reg_dat.m F834 *0030 0013

 page -33-

_

Scratch1 0000 *0039 0021 0022
Scratch2 0001 *0040
Second.m F836 *0032 0017
SizeOfHware 0008 *0048 0015
Start E000 *0013 0025
U_Limit 0000 *0043 0044
Vy_Low_Msg F819 *0063 0052
WORD 0002 *0025 0031 0032 0040

11.0 UPDATES & ERROR REPORTING

Known bugs

 o Subsequent redefinitions of redefinable symbols are not mentioned
 in cross reference table. Suppose records are kept in Fwd_ref but
 didn't check yet. No functional description of modules.

 o Include file listings with separate numbering show wrong line
 number at turn-over. Caused by fact that print_line() is last
 function before going on to next line and line number has already
 been changed by INCLUDE or END pseudo op. Line after is correct.

 o Amiga Iconx calling .KEY file1 file2 (etc.) script with tests
 for <file(n)>=NULL causes very bizarre error where every line
 beginning with 'A' is misinterpretted (not and Opcode). Presume
 that Iconx or possibly AmigaDOS or Intuition has some how screwed up
 incoming file but how? Doesn't happen with single .KEY file argument
 and can use <include> to cover tracks. Notice that Iconx calls
 commands direct if no .KEY but uses Execute command if .KEY statement.
 Process may not be inheriting input stream correctly or something in
 path extracting \ tA as command. Path is ->input.device->Iconx->
 Execute->Assembler with AmigaDOS and Intuition setting up and passing
 messages via Exec (I think).

 o Outside loop ENDIF statement is in listing twice. Difficult to fix
 because inside loop need to be printed even if not assembled. However,
 end of loop exits to main assembler routines which print current line,
 again.

 page -34-

_

	Copyright
	Disclaimer
	Authors
	Index
	Index page 2
	GENERAL
	Assemblers
	Compatibility with Previous Versions
	Source code format
	Labels & Symbols
	Opcode (Mnemonic)
	Operand
	Constants
	Symbols
	Expressions
	Pseudo Opcodes
	Equivalence
	Memory allocation
	Include files
	IFD-IFND-ELSE-ENDIF
	Listing control
	Program counter control
	Ignored pseudo opcodes
	CPU specifics
	68HC11 specifics
	File size
	Symbol size
	File locks
	Phasing errors
	Error listings
	Warning listing
	Fatal error listing
	Host specifics
	Symbol table format
	Cross-reference table
	Listing format
	Techniques
	Bugs

