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Introduction 
Most programming languages offer basic functionality for text processing where text is stored in 
memory as a consecutive sequence of characters. Two strategies are common to keep track of the 
number characters in the sequence. Either the sequence is terminated by a special symbol that may 
not occur within the sequence, or the number of characters is maintained explicitly by storing it in a 
separate location. In Pascal, as in many other programming languages, such a sequence is called a 
character string, or string for short. The number of characters in a string is called the length of the 
string.  

Although storing a text as consecutive characters is fine for shorter texts this causes problems when 
texts become larger. One issue is how much memory to allocate for storing a text, the exact storage 
requirements are usually not known in advance. Allocating a large chunk of memory beforehand may 
be very wasteful in terms of required memory space, allocating a small chunk of memory requires 
moving the entire text to another location when the string outgrows the space available. This clearly 
is very wasteful in terms of processing effort. Similar issues occur with the insertion and deletion of 
text fragments in a large text since these also require moving large parts of the text from one 
memory location to another.  

This document describes an implementation of the rope data structure, an alternative to strings that 
is better suited for processing large texts. The implementation is done as a unit for Free Pascal that 
defines a rope datatype that retains most of the familiar properties of strings. General information 
about the rope data structure can be found on https://en.wikipedia.org/wiki/Rope_(data_structure). 
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Rope data structure 
The rope data structure stores text in a binary tree that consists of two types of nodes, leaf nodes 
and concatenation nodes. Each leaf node stores a text fragment as a consecutive sequence of 
characters and a length field containing the number of characters in the sequence. Each 
concatenation node contains references to two other nodes to form a larger text fragment, a level 
field, and a weight field. The level field holds the largest relative level of the node towards the leaves 
of both branches. The level of the top node is called the depth of the tree. The weight field holds the 
total number of characters stored in the left branch. Both types of node contain a reference count to 
keep track of the number of outstanding references to the node. The structure of both types of node 
is illustrated in the picture below. 

 

Keeping track of the number of outstanding references to the rope data structure makes it possible 
to change a part of the text leaving the original unchanged. This behavior is often desired in word 
processing since it allows for recovering from erroneous changes in the text. The following picture 
gives an example. Here the text S: ‘the quick brown fox jumped over the lazy dog’ was changed into 
the text T: ‘the lazy dog chews a bone’ without destroying the original text.  

 

The rope data structure allows for text fragment insertion and deletion without requiring the 
movement of large parts of the text. Leaves that become fully filled can be transformed into a 
concatenation of two partially filled leaves. In reverse, a concatenation of two partially filled leaves 
can be transformed into a single leaf whenever the text is small enough to fit in a single leaf. When 
the leaves are relatively small this greatly reduces the need for moving large parts of the text.  



3 
 

The price paid for this is twofold. On the one hand there is an overhead in the total storage needed 
for storing the concatenation nodes. Leaves should not be too small to keep this overhead within 
reasonable bounds. Larger leaves will however increase the amount of data movement needed for 
splitting and merging leaves. On the other hand retrieving the address of a character at a certain 
position within the data structure requires more effort in comparison to strings since this requires 
traversing the tree from top to bottom in search of the leaf page where the desired character 
resides.  

Balancing the tree 

In order to keep the tree traversal that is needed to retrieve a character at a certain position efficient 
imbalance in the tree must be prevented. The tree is considered balanced when the depth of the left 
and right branch differs by no more than one in every node. Unfortunately, the tree loses balance 
when nodes are added or removed as text fragments are inserted or deleted. To restore the balance 
a rebalance operation is performed recursively at every node that is affected by the change. The 
rebalance operation compares the level of the two branches of the node and, if the level difference is 
greater than one, the tree is rotated in such a way that the node with the higher level becomes the 
new top node as illustrated in the picture below.  

Note that reference count of the rotating nodes A and B, both marked red in the picture, must be 
one to ensure that these nodes are not referenced by more than one variable during rotation. The 
rebalance operation does not check this because rebalancing is only performed during rope 
concatenation on nodes which are guaranteed not to be referenced more than once. After rotating 
the nodes A and B the level and weight fields, marked  green in the picture, are changed according to 
their new position in the tree. 

 

More information about balanced binary trees can be found on https://en.wikipedia.org/wiki/Self-
balancing_binary_search_tree. 
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Primitive operations 

The primitive operations on the rope data structure are concatenation and split. The concatenation 
operation is straightforward in principle and creates a new concatenation node that refers to both 
constituting parts. The actual implementation of concatenation however is more complex in order to 
keep the tree balanced. The split operation splits the rope into two ropes while keeping the original 
rope unimpaired.  Both primitive operations and how they are performed are discussed in detail in 
the following paragraphs. 

More familiar operations like insert and delete are constructed by making use of the primitive 
operations. The insert operation for example splits the rope using the split operation after which it 
concatenates the left part, the text to insert, and the right part together by using the concatenation 
operation twice. Likewise the delete operation uses the split operation twice to split the rope in tree 
parts. Then it concatenates the first and last part using the concatenation operation and discards the 
middle part. 

Concatenation 
The concatenation operation concatenates two ropes together into one large rope. In order to 
ensure that the resulting rope is balanced the concatenation operation distinguishes between three 
cases depending on the depth difference of both ropes.  The way concatenation is performed in each 
case is illustrated in the following picture. In the picture the new nodes that are created during the 
concatenation are marked green, the changes to existing nodes are marked red.  

When both ropes are of equal depth (𝑎௟ = ℎ௟) then concatenation is straightforward. In this case 
concatenation is performed by creating a new top node and adjusting the reference counts in the top 
nodes marked A and H of the ropes being concatenated. 

When the depth of the left rope is smaller than the depth of right rope (𝑎௟ < ℎ௟) then the left branch 
of the right rope is followed until the node marked J with equal depth (𝑎௟ = 𝑗௟) is found. During this 
process new concatenation nodes are created to form a new tree that references the right parts of 
the nodes encountered. The reference count of the nodes that are now also referenced by the new 
tree are incremented. Note that only the first newly created node marked R, one intermediate node 
marked U, and the last two nodes node marked Y and Z are drawn. Finally the left branch of the node 
created last marked Z is directed to top node of the left rope marked A. During the creation process 
of the new tree the appropriate values for the level and weight fields of the new concatenation 
nodes are computed as indicated by the formulae depicted next to the nodes.  

When the depth of the left rope is greater than the depth of right rope (𝑎௟ > ℎ௟) then the 
concatenation process is the mirror image of the one described directly above. Now the right branch 
of the left rope is followed until the node marked G with equal depth (𝑎௟ = 𝑔௟) is found. New 
concatenation nodes are created to form a new tree that references the left parts of the nodes 
encountered. Finally the right branch of the node created last marked Z is directed to top node of the 
right rope marked H. 
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Split 
The split operation splits a rope into two parts while keeping the original rope unimpaired as  
illustrated in the picture below. The split operation traverses the tree recursively from the top node 
marked R downwards each time selecting the left or right branch of the concatenation nodes 
encountered. When the split index is smaller than the weight of the concatenation node then the left 
branch is followed. When the split index is greater or equal than the weight then the weight is 
subtracted from the split index after which the right branch is followed.  

 

This process stops when a leaf node is encountered. When the split index lies within the leaf the leaf 
node is split by creating a new leaf node, copying the text beyond the split index to the new leaf 
node, and truncating the content of the leaf node that was found by adjusting the length field. The 
truncated leaf node is then concatenated with the new leaf node leaving the original rope text 
unimpaired. In the example depicted the left branch was followed at the top node marked R to arrive 
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at the node marked A. Next the right branch of node A is followed to arrive at the leaf marked C.  
This leaf node is then split into two leaves marked G and H, and the two parts are concatenated 
together by concatenation node C replacing the original leaf. 

Finally the path taken while traversing the tree is followed in the reverse order. During this process 
new trees for the left and right parts of the original rope are constructed by concatenating the nodes 
referenced by the left or right branches of the nodes into new ropes marked S and T. In nodes where 
the right branch was followed the node referenced by the left branch is concatenated into the left 
rope S, in the nodes where the left branch was followed the node referenced by the right branch is 
concatenated into the right part tree marked T. During the creation process of the new trees the 
appropriate values for the level and weight fields of the new concatenation nodes are set. 

Using the Ropes unit 
The Ropes unit implements the rope data structure as a Pascal data type. In order to make the unit 
easy to use the operations are designed to resemble the familiar String operations as closely as 
possible. Since outstanding references to every rope must be counted ropes are somewhat more 
difficult to use than ordinary strings. The way these reference counts are maintained resembles the 
bookkeeping that is performed while using AnsiString variables. The main difference is that it is 
now the responsibility of the programmer to call the appropriate bookkeeping routines. With 
AnsiString variables, these calls are automatically inserted by the compiler.  

To understand how this bookkeeping is done consider the following program.  

 
   // Bookkeeping routines example 
 
   program RopeExample1; 
 
      uses Ropes; 
 
      var R:Rope; 
 
      procedure Reverse(var R:Rope); 
 
         var S:Rope; I:Cardinal; Ch:Char; 
 
      begin {Reverse(var R:Rope)} 
      Make(S); 
      for I:=1 to Length(Load(R)) do 
         begin 
         Ch:=Select(Load(R),I); 
         Store(S,Load(Ch)+Load(S)) 
         end; 
      Store(R,Load(S)); 
      Drop(S) 
      end; {Reverse(var R:Rope)} 
 
   begin {RopeExample1} 
   Make(R); 
   Store(R,Load('Hello world!')); 
   WriteLnRope(Load(R)); 
   Reverse(R); 
   WriteLnRope(Load(R)); 
   Drop(R) 
   end. {RopeExample1} 
 

In order to properly initialize rope variables the program must explicitly create the variables by 
calling the procedure Make for each rope variable declared. Normally this call is issued just before 
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the first statement of the block in which the variable is declared. Also, since storage for rope nodes is 
allocated on the heap, rope variables must be explicitly destroyed by calling the procedure Drop 
before the declared variable goes out of scope, i.e. just after the last statement of the block. Note 
that variables of a structured data type containing ropes must issue a call to Make and Drop for 
every rope element in the structure. Also note that dynamic variables containing ropes must issue a 
call to Make for every rope element they contain after the dynamic variable is created. Similarly a 
call to Drop must be issued for every rope element before disposing the dynamic variable. 

When rope variables are used in expressions the rope’s value is retrieved by issuing a call to the 
Load function. The value retrieved creates a new implicit reference to the rope and the Load 
function takes care of incrementing the reference count to account for the implicit reference. Note 
that the Load function must not be called when passing a variable as a parameter by reference i.e. as 
an argument for a variable parameter. 

Assignment of rope variables is handled by the Store procedure that takes care of destroying the 
old rope value thus freeing the storage allocated for it. The Store procedure also takes care of 
decrementing the reference count of new rope value that is passed as an argument. 

Finally, the Load function is overloaded so it can accept an AnsiString as its argument. This 
overloaded function converts the string argument to a rope tree.  

The following program shows how bookkeeping is done when ropes are used as value parameters 
and/or a function result.  

    
   // Bookkeeping routines example 
 
   program RopeExample2; 
 
      uses Ropes; 
 
      var R:Rope; 
 
      function Reverse(R:Rope):Rope; 
 
         var S:Rope; I:Cardinal; Ch:Char; 
 
      begin {Reverse(R:Rope):Rope} 
      Declare(R); Make(Reverse); Make(S); 
      for I:=1 to Length(Load(R)) do 
         begin 
         Ch:=Select(Load(R),I); 
         Store(S,Load(Ch)+Load(S)) 
         end; 
      Store(Reverse,Load(S)); 
      Drop(S); Drop(R); Pass(Reverse) 
      end; {Reverse(R:Rope):Rope} 
 
   begin {RopeExample2} 
   Make(R); 
   Store(R,Load('Hello world!')); 
   WriteLnRope(Load(R)); 
   Store(R,Reverse(Load(R))); 
   WriteLnRope(Load(R)); 
   Drop(R) 
   end. {RopeExample2} 
 

Value parameters behave like local variables that are already initialized so they do not have to be 
initialized by a call to the Make procedure. The Declare procedure is called instead in order to 
keep track of the total number of active rope variables and the total length of all ropes. 
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The function result must be initialized by a call to the Make procedure just like a variable. Since the 
value must be preserved it can’t be dropped. A call to the Pass procedure must be issued instead in 
order to keep track of the total number of active rope variables and the total length of all ropes. 

Constants and types  

Constants  
The Ropes unit defines the following constants. 

Maximum number of characters stored in a leaf node. 

MaxLLen = 256 

Maximum depth of a rope tree. 

MaxLevel = 64 

Empty rope constant. 

Empty : Rope = (Nil) 

Types 
The Ropes unit defines the following types. 

Allowed node level values, an empty rope has level 0, a leaf node has level 1, concatenation nodes 
can have a level ranging from 2 to MaxLevel. 

Level = 0..MaxLevel 

Pointer to a generic node i.e. either a leaf or a concatenation node.  

PGeneric = ^GenericNode 

Pointer to a leaf node.  

PLeaf = ^LeafNode 

Pointer to a concatenation node.  

PConcat = ^ConcatNode 

The Rope data type is declared as a one element array with a single pointer to a generic node. This 
somewhat complicated structure is necessary to allow overloading the operators that would 
normally act on the pointer value.  

Rope = array [0..0] of PGeneric 

Generic node type used to determine if a node is a leaf or a concatenation node. The node type is 
encoded in the most significant bit of the TRCount field. This bit contains a 0 for leaf nodes and a 1 
for concatenation nodes. The other bits of the TRCount field hold the reference count of the node.  

GenericNode = record 
   // Type tag and reference count 
   TRCount     : Cardinal 
   end; {GenericNode} 

Leaf  node type used to store character content. The TRCount field contains a 0 in the most 
significant bit to indicate a leaf node. The other bits of the TRCount field hold the reference count 
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of the node. The LLen field holds the number of characters stored in the LText field starting at the 
first position of the array.   

LeafNode = record 
   // Type tag and reference count 
   TRCount     : Cardinal; 
   // Leaf length: number of characters in leaf text 
   LLen        : 0..MaxLLen; 
   // Leaf text character buffer 
   LText       : array [1..MaxLLen] of Char 
   end; {LeafNode} 

Concatenation node type used to build the rope tree. The TRCount field contains a 1 in the most 
significant bit to indicate a concatenation node. The other bits of the TRCount field hold the 
reference count of the node. The NLevel field holds the largest relative level of the node towards 
the leaves of both branches. The NWeight field holds the total number of characters stored in the 
left branch.   

ConcatNode = record 
   // Type tag and reference count 
   TRCount     : Cardinal; 
   // Node level within rope tree 
   NLevel      : Level; 
   // Node weight: length of text in left branch 
   NWeight     : Cardinal; 
   // Left and right branches 
   Left, Right : Rope 
   end; {ConcatNode} 

Enumeration class type to allow the implementation of an enumerator operator. The enumerator 
operator is not used in explicit expressions but enables the use for..in loops with a rope variable. The 
fields, properties and methods are used automatically from within for..in loop. 

REnumerator = class 
   private 
      // Back reference to rope 
      BRef        : Rope; 
      // Current position and rope length 
      Pos, Len    : Cardinal; 
      // Get character at current position 
      function GetCurrent:Char; 
   public 
      // Construct enumerator 
      constructor Create(R:Rope); 
      // Destruct enumerator 
      destructor Destroy; override; 
      // Character at current position 
      property Current:Char read GetCurrent; 
      // Advance to next position enumerator 
      function MoveNext:Boolean; 
      end; {Renumerator} 
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Procedures, functions , and operators 
The Ropes unit defines the following procedures, functions, and operators. These come into two 
categories, functional core routines and support and diagnostic routines.  

Functional core routines 
The Make procedure initializes rope variables and increments the rope variable count. 

// Create empty rope variable 
procedure Make(var R:Rope); 

The Drop procedure decrements the rope variable count and adjusts the overall rope length. Then it 
decrements the reference count of the node referenced by R. When the reference count reaches 
zero it disposes all unreferenced nodes of the rope. 

// Drop rope variable 
procedure Drop(var R:Rope); 

The Declare procedure increments the rope variable count and adjusts the overall rope length. 

// Declare rope value parameter 
procedure Declare(var R:Rope); 

The Pass procedure decrements the rope variable count and adjusts the overall rope length. 

// Pass function result 
procedure Pass(var R:Rope); 

The Load function with a Rope argument increments the reference count of the node referenced 
by R and returns a reference to this node. 

// Allocate rope variable and retrieve value 
function Load(var R:Rope):Rope; 

The Load function with a String argument constructs a new rope from the string text. 

// Create rope value from ANSI string 
function Load(Str:AnsiString):Rope; 

The Store procedure decrements the reference count of the node referenced by R. When the 
reference count reaches zero it disposes all unreferenced nodes of this rope. Finally the reference in 
S is copied into R and the overall rope length is adjusted. 

// Release rope variable and store new value 
procedure Store(var R:Rope; S:Rope); 

The Select function returns the character that is stored at position I from rope R.  

// Select and return value of R[I] 
function Select(R:Rope; I:Cardinal):Char; 

The + operator with Rope operands returns the concatenation of the two operands.  

// Concatenate ropes S and T 
operator + (S, T:Rope) R:Rope; 

The = operator with Rope operands returns True when the content of both operands is equal.  

// Return true when rope S equal T 
operator = (S, T:Rope) R:Boolean; 
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The <> operator with Rope operands returns True when the content of both operands is not equal. 

// Return true when rope S unequal T 
operator <> (S, T:Rope) R:Boolean; 

The < operator with Rope operands returns True when the content of the first operand is strictly 
less than the content of the second operand in alphabetic order. 

// Return true when rope S strictly less than T 
operator < (S, T:Rope) R:Boolean; 

The > operator with Rope operands returns True when the content of the first operand is strictly 
greater than the content of the second operand in alphabetic order. 

// Return true when rope S strictly greater than T 
operator > (S, T:Rope) R:Boolean; 

The <= operator with Rope operands returns True when the content of the first operand is less 
than or equal to the content of the second operand in alphabetic order. 

// Return true when rope S less than or equal T 
operator <= (S, T:Rope) R:Boolean; 

The >= operator with Rope operands returns True when the content of the first operand is greater 
than or equal to the content of the second operand in alphabetic order. 

// Return true when rope S greater than or equal T 
operator >= (S, T:Rope) R:Boolean; 

The Length function with a Rope argument returns the number of characters in the rope content.  

// Return length of rope R 
function Length(R:Rope):Cardinal; 

The Length function with a String argument returns the number of characters in the string 
content. This function is redefined to allow normal use of the overloaded function. 

// Return length of string S 
function Length(S:AnsiString):Cardinal; 

The Pos function with Rope arguments returns the position of the first occurrence of the content of 
rope S in the content of rope R. The function returns zero when the content of S does not occur in 
the content of R. 

// Return position of first occurrence of rope S in rope T 
function Pos(S, T:Rope):Cardinal; 

The Concat function with two Rope arguments returns the concatenation of the two operands. 

// Concatenate ropes R1 and R2 
function Concat(R1, R2:Rope):Rope; 

The Concat function with three Rope arguments returns the concatenation of the three operands. 

// Concatenate ropes R1, R2 and R3 
function Concat(R1, R2, R3:Rope):Rope; 
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The Concat function with four Rope arguments returns the concatenation of the four operands. 

// Concatenate ropes R1, R2, R3 and R4 
function Concat(R1, R2, R3, R4:Rope):Rope; 

The Copy function with a Rope argument returns a rope of length L of which the content is a copy 
of the content of rope R, starting at position I. When L is larger than the length of rope R, the result 
is truncated. When the position I is larger than the length of rope R, then an empty rope is returned. 

// Return rope of L characters from R starting at R[I] 
function Copy(R:Rope; I, L:Cardinal):Rope; 

The Delete procedure with a Rope argument removes L characters from rope R, starting at 
position I, and the length of the rope is adjusted. Note that the characters after the removed 
characters are now located at a position that lies L places to the left of their original position.  

// Delete L characters from R starting at R[I] 
procedure Delete(var R:Rope; I, L:Cardinal); 

The Insert procedure with a Rope argument inserts the content of rope S in rope R, starting at 
position I, and the length of the rope is adjusted. Note that the characters after the inserted 
characters are now located at a position that lies L places to the right of their original position. 

// Insert rope S in rope R after R[I] 
procedure Insert(S:Rope; var R:Rope; I:Cardinal); 

The Upcase function with a Rope argument returns a rope that contains a copy of the content of 
rope R in which all lower case letters are converted to upper case. 

// Return conversion of R to upper case 
function Upcase(R:Rope):Rope; 

The Lowercase function with a Rope argument returns a rope that contains a copy of the content 
of rope R in which all upper case letters are converted to lower case. 

// Return conversion of R to lower case 
function Lowercase(R:Rope):Rope; 

The ReadRope procedure creates a rope R from the characters it reads from standard input. The 
characters are read from standard input until the end of the line is encountered. The line termination 
is considered a terminator and is not part of the rope content.   

// Read rope text from standard input 
procedure ReadRope(var R:Rope); 

The ReadLnRope procedure with a Rope variable parameter is almost identical to the ReadRope 
procedure. The only difference is that the ReadRope procedure stops at the end of the line whereas 
the ReadLnRope procedure proceeds to the first character of the next line after reading. 

// Read rope text and line terminator from standard input 
procedure ReadLnRope(var R:Rope); 
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The ReadRope procedure with an extra Text file variable parameter is almost identical to the 
ReadRope procedure. The only difference is that now input not read from standard input but from 
the Text file instead. 

// Read rope text from text file 
procedure ReadRope(var T:Text; var R:Rope); 

The ReadLnRope procedure with an extra Text file variable parameter is almost identical to the 
ReadLnRope procedure. The only difference is that now input not read from standard input but 
from the Text file instead. 

// Read rope text and line terminator from text file 
procedure ReadLnRope(var T:Text; var R:Rope); 

The WriteRope procedure writes the content of rope R to standard output.   

// Write rope text to standard output 
procedure WriteRope(R:Rope); 

The WriteLnRope procedure writes the content of rope R to standard output followed by a line 
terminator.  

// Write rope text and line terminator to standard output 
procedure WriteLnRope(R:Rope); 

The WriteRope procedure with an extra Text file variable parameter is almost identical to the 
WriteRope procedure. The only difference is that now output is not written to standard output but 
to the Text file instead. 

// Write rope text to text file 
procedure WriteRope(var T:Text; R:Rope); 

The WriteLnRope procedure with an extra Text file variable parameter is almost identical to the 
WriteLnRope procedure. The only difference is that now output is not written to standard output 
but to the Text file instead. 

// Write rope text and line terminator to text file 
procedure WriteLnRope(var T:Text; R:Rope); 

Support and diagnostic routines 
The enumerator operator is not used in explicit expressions but enables the use for..in loops with 
a rope variable. 

// Enumerator operator to allow for .. in loops 
operator enumerator (R:Rope):REnumerator; 

The LeafNodes function with a Rope argument returns the number of leaf nodes of the rope. 
Note that some or all of these nodes may be shared with other ropes. 

// Return rope leaf node count for rope R 
function LeafNodes(R:Rope):Cardinal; 

The ConcatNodes function with a Rope argument returns the number of concatenation nodes of 
the rope. Note that some or all of these nodes may be shared with other ropes. 

// Return rope concatenation node count for rope R 
function ConcatNodes(R:Rope):Cardinal; 
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The Depth function returns the level of the top node of the rope i.e. the largest relative level of this 
node towards the leaves of both branches.  

// Return rope tree depth for rope R 
function Depth(R:Rope):Level; 

The RopeVariables function returns the number of rope variables created within the current 
scope of execution of the program.  

// Return current rope variable count 
function RopeVariables:Cardinal; 

The LeafNodes function returns the total number of leaf nodes created within the current scope of 
execution of the program. 

// Return total leaf node count for current rope variables 
function LeafNodes:Cardinal; 

The ConcatNodes function returns the total number of concatenation nodes created within the 
current scope of execution of the program. 

// Return concatenation node count for current rope variables 
function ConcatNodes:Cardinal; 

The Length function returns the sum of the lengths of all rope variables created within the current 
scope of execution of the program. Note that this sum may exceed the actual number of bytes of 
storage that is actually used since different ropes may share part of their structure.  

// Return total length of current rope variables 
function Length:Cardinal; 

Rope/String comparison  
Theoretically ropes have an advantage over strings when processing large texts in terms of speed 
when inserting or deleting parts of the text. But there is a price to be paid in terms of storage 
overhead and the time needed to reach an individual character at a certain position. In order to 
facilitate making the choice between using ropes or strings two tests were performed comparing a 
rope and a string implementation.  

The tests compare the time needed using two types of ropes, one with the standard leaf size of 
256 bytes and one with a larger leaf size of 512 bytes, with the time needed when using strings. In 
order to be able to use very long texts the AnsiString data type was used as the string data type. 
The memory utilization of both rope types was determined also for comparison. The memory 
utilization of the string implementation was not determined since the documentation does not 
provide enough insight in the exact mechanics of the AnsiString data type. 

Both tests use a long text that is built by repeatedly concatenating a string that holds a single 
sentence. Note that, since the text is built from a string rather than a rope, this gets around the 
reference counting mechanism so the resulting text now stores multiple distinct copies of the 
sentence.  
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Scan and insertion 
The scan and insertion test uses the sentence ‘The quick fox jumped over the lazy dog.’ as the base 
sentence for constructing the text. After the text is built a search is performed for all occurrences of 
the word ‘fox’ and at every position found the word ‘brown‘ with a trailing space is inserted at that 
position. The following table shows the results of repeating the test for texts of increasing length. 

  
  

Ansi String Rope       
  Leaf size 256 bytes Leaf size 512 bytes 

Repetition ΔT (ms) ΔT (ms) Utilization (%) ΔT (ms) Utilization (%) 
1  0  0  18  0  9  
2  0  0  35  0  18  
4  0  0  69  0  35  
8  0  0  66  0  69  

16  0  0  87  0  68  
32  0  0  73  0  90  
64  0  0  78  1  89  

128  0  1  78  1  89  
256  1  3  80  3  89  
512  2  7  79  7  91  

1.024  2  16  79  17  91  
2.048  5  38  79  35  91  
4.096  24  86  79  80  92  
8.192  127  191  79  181  92  

16.384  1.800  429  79  395  92  
32.768  7.024  942  79  874  92  
65.536  32.468  2.073  79  1.946  92  

131.072  130.440  4.560  79  4.263  92  

  The following graphic shows the relation between the time needed and the number of insertions. 
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Scan and substitution 
The scan and substitution test uses the sentence ‘The quick brown fox jumped over the lazy dog.’ as 
the base sentence for constructing the text. After the text is built a search is performed for all 
occurrences of the word ‘brown’ and at every position found the word ‘brown‘ is substituted by the 
word ‘red’. The following table shows the results of repeating the test for texts of increasing length. 

  
  

Ansi String Rope       
  Leaf size 256 bytes Leaf size 512 bytes 

Repetition ΔT (ms) ΔT (ms) Utilization (%) ΔT (ms) Utilization (%) 
1  0  0  18  0  9  
2  0  0  34  0  17  
4  0  0  66  0  34  
8  0  0  63  0  66  

16  0  0  83  0  65  
32  0  0  82  0  86  
64  0  1  81  1  85  

128  0  2  81  1  85  
256  0  3  83  1  85  
512  1  7  83  6  87  

1.024  2  15  83  14  88  
2.048  5  34  83  33  87  
4.096  42  76  83  73  87  
8.192  141  170  83  161  88  

16.384  1.383  376  83  355  88  
32.768  8.349  831  83  786  88  
65.536  35.963  1.823  83  1.729  88  

131.072  147.736  4.020  83  3.819  88  

The following graphic shows the relation between the time needed and the number of substitutions. 
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The RopeDemo program 
In order to demonstrate how the Ropes unit can be used for word processing the RopeDemo 
program shows an implementation of  a small text editor. Central in the design is an array that holds 
the text being edited along with control information like cursor position, current line and column, 
etcetera. When a change is requested the editor first creates a copy of the contents of the current 
array slot in the next slot. Then the editor advances to the next slot which contains the copy and 
applies the change. This design greatly facilitates implementation of an ‘undo’ and a ‘redo’ operation. 
Copying the entire text  however would not be very efficient using strings since the entire text is 
duplicated with every change that is applied. When using ropes the overhead of copying is much less 
due to the use of reference counts within the data structure. With ropes only the nodes that are 
affected by the change are duplicated.   

The RopeDemo program divides the screen into three areas, a header area that shows the name of 
the file, a content area containing the text , and a footer area that displays editor status information. 
The status display can be switched between cursor, text, history, storage, and node information. 

 The cursor information shows the line, column, and relative position of the cursor within the 
text. 

 The text information shows the number of lines, characters, and pages of the text. 
 The history information shows the number of undo entries, redo entries, and total entries in 

the editor history.  
 The storage information shows the total length of all ropes and the bytes used for storage. The 

memory utilization is calculated from these and the result is shown as a percentage. Since the 
ropes  share nodes the memory utilization may exceed 100%. 

 The node information shows the number of concatenation nodes, leaf nodes, and total nodes 
within the system. 

The RopeDemo program recognizes the normal keys used for scrolling and editing text (arrow keys, 
PgUp, PgDn, Tab, Delete, Backspace). The Home and End key move the cursor to the beginning and 
end of the current line respectively. The Insert key toggles between inserting and overwriting 
characters. The commands recognized by the RopeDemo program are listed in the following table. 

Command Function 
Alt N Create new file 
Alt O Open existing text file 
Alt S Save file 
Alt W Save file under another name 
Alt B Mark beginning of selection 
Alt E Mark end of selection 
Alt C Copy selected text fragment  to clipboard 
Alt P Paste text fragment from clipboard 
Alt F Find text fragment 
Alt R Find and replace text fragment 
Alt A Search next occurrence  
Alt U Undo change 
Alt D Redo change 
Alt X Terminate and exit program 
Alt 1 Switch to  cursor information 
Alt 2 Switch to text information 
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Command Function 
Alt 3 Switch to history information 
Alt 4 Switch to storage information 
Alt 5 Switch to node information 

The RopeDemo program was set up to use a display area of 80 columns by 50 lines so the actual 
display device used should accommodate these dimensions to run the program without alterations. 
In a windowed environment the window must be set up to correspond to these dimensions in order 
to display information correctly. In Microsoft Windows this is done by right-clicking the top edge of 
the window and setting the properties accordingly. 


