HARMONIC CUBE
 (CALLED 'MAGIC CUBE" AS WELL)
 (topside-view)

I.

19	48	1	62
42	21	60	7
31	36	13	50
38	25	56	11

II.

46	17	64	3
23	44	5	58
34	29	52	15
27	40	9	54

III.

28	39	10	53
33	30	51	16
24	43	6	57
45	18	63	4

IV.

37	26	55	12
32	35	14	49
41	22	59	8
20	47	2	61

So-called "magic" squares and dito cubes bear that name wrongly in my opinion.
Therefore the name "harmonic cube". At this model I have been looking for optimal harmony.
In the three dimensions and to the four body diagonals for each row of four little blocks applies: $\Sigma=\mathbf{1 3 0}$.
Moreover that holds in bundles of $\mathbf{2} \mathbf{x} \mathbf{2}$ little blocks too.
Jaap Geluk.

© 1995 Jaap Geluk, Utrecht, The Netherlands.

