HARMONIC CUBE
 (CALLED "MAGIC CUBE" AS WELL)
 (topside-view)

I.

51	16	33	30
10	53	28	39
63	4	45	18
6	57	24	43

II.

14	49	32	35
55	12	37	26
2	61	20	47
59	8	41	22

III.

60	7	42	21
1	62	19	48
56	11	38	25
13	50	31	36

IV.

5	58	23	44
64	3	46	17
9	54	27	40
52	15	34	29

So-called "magic" squares and dito cubes bear that name wrongly in my opinion.
Therefore the name "harmonic cube". At this model I have been looking for optimal harmony.
In the three dimensions and to the four body diagonals for each row of four little blocks applies: $\Sigma=\mathbf{1 3 0}$.
Moreover that holds in bundles of $\mathbf{2} \mathbf{x} \mathbf{2}$ little blocks too.
Jaap Geluk.

© 2012 Jaap Geluk, Utrecht, The Netherlands.

