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Summary 
This document describes the current state of Stratego programming in literature and possible 
improvements for the status quo. It contains suggestions to implement some known programming 
techniques that already have been implemented in other areas of game programming. The arsenal of 
currently used universal algorithms is not sufficient to accomplish really significant improvements in 
the playing strength. Real progress can be made by the implementation of game knowledge or by 
algorithms that have not been used until now in Stratego programs. In this article attention goes to a 
first concept of structured theoretical game knowledge and thereby a framework for decision making 
in Stratego programs. From this framework suggestions are made about the ways game knowledge 
can be implemented and combined with current conventional algorithms. 
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Preface 

Years ago I discovered that Stratego constitutes an ultimate challenge for programmers of artificial 
intelligence. When there was time enough to accept this challenge seriously I was able to test some 
items which were not mentioned in Stratego literature. The first results were disappointing. They 
showed that my ideas only covered a tiny part of the Stratego problem.  
 
My conclusion was (and is) that only a broad theoretical base including game knowledge may offer a 
real perspective to better playing Stratego programs. Therefore I have tried to extend my theoretical 
knowledge of the game. That has led me to conclusions about what is necessary to make a Stratego 
program that will play on a reasonable level. Because preliminary research is required for most of the 
suggested improvements the realisation is going to take much, much time, probably many years. 
 
The use of game knowledge appeared to be necessary. This has consequences for the chance that 
Stratego programming will be improved substantially. 
The academic world prefers to improve board games by the use of universal applicable algorithms 
that do not depend on domain knowledge. In case of Stratego this preference may be reinforced by 
the lack of literature that in detail describes how to play Stratego. This leads to the question what 
efforts the academic world is willing to spend to the game of Stratego in the future. The preference 
for issues with a universal applicability leaves chances for only a few methods (probably Monte Carlo 
tree search or self-learning) that have not yet been used for Stratego. This tendency will hamper 
farther investments in the implementation of domain-dependent algorithms. Development by a 
commercial company is improbable because the return on investment is insufficient.  Therefore 
progress by game knowledge will depend on the interest of individual persons in the improvement of 
the playing strength of Stratego programs. This document shows that a long way has to be gone, and 
the amount of work may be too voluminous for one person. For me it will take years to do research 
and develop a program. The dependence on individual effort is a reason for me to share knowledge 
about the game and programming techniques. In my view not sharing what should be common 
information is a waste of time. 
 
This document is not a design for a Stratego program. It contains an inventory of points where 
improvements are possible in comparison with programs that have been described in current 
literature. The exclamation symbol  indicates the presence of a subject that is suitable for some 
kind of improvement. For most of the improvements preliminary research will be required. 
Current literature does not fully reflect the current state of the art. However it is very well possible 
that some of the mentioned steps already have been fixed by someone else. Nevertheless I hope this 
paper will be a source of inspiration for anyone who has the same fascination for the challenge that 
Stratego offers. 
 
Han Wolf, September 2018 
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1 Introduction 

1.1 Status quo 
More than 15 years ago – in May 1997 – a computer program defeated the world champion chess. 
That was a milestone in the development of programs for board games. Suddenly people recognized 
that more sooner than later humanity should bow for the superiority of the computer in other board 
games. In fact gradually the computer has been developed as a formidable opponent in most other 
board games. 
 
But Stratego is one of the board games where the computer has not attained the level of human 
master players. In the academic world research has been done in order to improve the playing 
strength with known domain independent algorithms, but these attempts have led to not more than 
a mediocre playing strength. With the standard techniques described in current literature a master 
level in Stratego is unattainable. This leads to the more positive conclusion that a whole domain lies 
in front of us that offers more than enough challenge for phantasy and experiment. 

1.2 The challenge 
Why is it so difficult to make a good playing Stratego program? Most important reasons are: 

 The initial position can be chosen completely in accordance with personal preference 

 The ranks of pieces of the opponent stay unknown until they duel. 
This lack of information makes Stratego more complex than board games with a fixed initial position 
and pieces with known ranks. 
 
A practical problem too is the lack of literature with expert knowledge about Stratego. Well filled 
libraries are available for games like draughts, chess, go, etcetera. Anyone who wants to know how 
Stratego should be played can find some fragmentary and brief directives on Internet [VB, JM2]1. In a 
tutorial of the Probe program more global directives with examples can be found [IS]. 
 
All this makes Stratego programming rather difficult, but there is more to it. 
In Stratego gains or losses originate from duels between pieces. Before pieces come to a duel they 
have to bridge a distance and in Stratego usually this takes a lot of moves. So most of the moves in 
Stratego are moves to an empty square on the board. The value of a move to an empty square 
depends on the goal that is being pursued by the move, in most cases a duel that should be attained 
or avoided. So it is necessary to look ahead to a goal. In board games the look ahead usually is being 
achieved by a brute force analysis of a search tree. But most tactical goals in Stratego only can be 
detected by a look ahead of many more moves than practically is possible with a search tree.  
A trustworthy evaluation of most moves in Stratego cannot be achieved by only a brute force 
analysis of a search tree, additional methods are necessary. 

1.3 Dynamic and static look ahead 
Literature draws a distinction between: 

 Dynamic look ahead by an analysis of moves in a search tree 

 Static look ahead by an analysis of characteristics in a game position. 
In his thesis the author Vincent de Boer describes his program Invincible as a program that only uses 
static look ahead [VB]. A program based on agents by Mohannad Ismail [MI] too does not use search 
trees. But most programs in academic research use exclusively search trees for the determination of 
the best move in a game position. Static look ahead is essential for improvement of the playing 
strength of Stratego programs. Probably a combination of both dynamic and static look ahead offers 
best chances for improving the playing strength. A combination of search trees and static look ahead 

 has been implemented by Imer Satz in Probe, the current world champion of Stratego programs.    

                                                           
1
 Chapter 9 contains a list of these literature references 
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2 Already used decision methods 
For the academic world Stratego is of importance because it offers a challenge to the theory of 
artificial intelligence. Literature mentions various methods to let play Stratego by a program: 

 Search trees 

 Goals and plans 

 Agents 

 Monte Carlo 

 Genetic algorithms 

 Computer learning with convolutional neural networks. 

2.1 Search trees 
In most board games the authors use search trees where the best move is determined by some kind 
of minimax method [WP1]. In Stratego this principle is applicable too, but the search tree has to be 
adapted because unknown pieces of the opponent can have various ranks [SA]. If an unknown piece 
may have more than one rank then this enlarges the number of possibilities. This makes the search 
tree broader. The broader a search tree, the less the capacity to look ahead by brute force. 
 
The academic world has especially given attention to diminish the size of the search tree in Stratego. 
All theoretical possibilities with regard to this aspect have been applied exhaustively [SA]. 
Restrictions to processing time limit the horizon of tree search in most of these studies to 6 moves or 
less. In Stratego it is necessary to look ahead much farther than 6 moves. In order to look ahead 
farther algorithms are necessary that look ahead without the execution of moves. 
The author Imer Satz of the world champion program Probe has improved the look ahead in the 
program by analysis and evaluation of free paths in the nodes of the search tree. The future will learn 
whether more methods can be found that enlarge the look ahead in search trees in Stratego. 
Who wants to learn about shortest path algorithms can find information on Wikipedia [WP6]. 

2.2 Plans 
The program Invincible is one of the better Stratego programs [VB]. It chooses the best move from 
plans in an actual game position. This is a realisation of the principle “look ahead without the 
execution of moves”. The author Vincent de Boer has been world champion Stratego a number of 
times and thus has an extensive and deep expert knowledge of the game. Apparently the possession 
of such knowledge is a necessary condition for the development of a program that works in 
accordance with this principle. 

2.3 Agents 
The use of agents is a method to distribute a complex problem over more than one problem solver. 
Mohannad Ismail is the author of a Stratego program that has been based upon the interaction of 
agents [MI]. Each agent represents a piece that in a specific way looks at the position on the board, 
evaluates situations and complies with specific rules of behaviour. The author assumes that expert 
knowledge of Stratego is necessary to make a strong playing program with this method. 
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2.4 Monte Carlo 
This method tries to determine the best move in a game position by simulation of game positions. 
A random sample of game positions is generated. In generated game positions moves are done and 
evaluated in a simple way. Information about the current game is used both in the selection of 
positions and the selection of moves. A move is chosen that occurs as the best move in most game 
positions of the sample. 
Jeroen Mets has done a study of Monte Carlo Stratego [JM1] and concludes that Monte Carlo with 
random generated positions and random generated moves gives a slight improvement of the playing 
strength in Stratego.  
 
The Monte Carlo method has been mentioned in an article of Jeff Putkin and Ju Tan [PT] too. 

2.5 Genetic algorithms 
The use of genetic algorithms is a method to optimize evaluation functions of Stratego programs.  
Weight factors of criteria in an evaluation function are varied and the resulting evaluation functions 
are used in games played against opponents with a fixed playing strength. This approach is a search 
for the combination of weight factor values that produces most wins in games. The success of this 
method depends on the set of evaluation criteria that should be optimised by weight factors.  
A study by Ryan Albarelli, and more recently a study by Vincent Turu and R.M. de Boer, has shown 
that the optimising of parameters in an evaluation function is possible and really leads to 
improvement of the playing strength. 

2.6 Computer learning with convolutional neural networks 
Artificial neural networks are being used for machine learning, as applied to speech and object 

recognition, image segmentation, modelling language and human motion, etc. Recently a study to 

learn play Stratego by convolutional neural networks has been described in an article of Schuyler 

Smith[SS]. A slight improvement with regard to a basic playing strength has been achieved. 
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3 The decision process in a Stratego program 

3.1 Decision making by human players 
Uncertainty and lack of information in Stratego require a kind of decision making that differs from 
decision making in games where decisions primarily are based on exact information. A practically 
effective approach is to apply structure to the own actions in order to get more hold on situations 
where anything is uncertain.  
 
Literature about expert knowledge of other games often distinguishes strategical and tactical levels 
of decision making. Do human players apply consciously these levels in their thought processes? Only 
guesses are possible here. No research is available, therefore here a first and speculative attempt. 
 
It seems that the focus of a human player is on plans; probably these are the most used “units of 
thought”. On that base a player chooses a move.  
A schematic presentation of this process may look like: 
 

Move data
Opponent 

plan
Counter plan

Alternative
plan

Alternative
plan

Alternative
plan

Alternative
plan

Decision
making

Currently
executed

plan

Choice of a 
plan and a 

move

  
 
A human player selects a plan from a number of candidate plans and keeps to this plan if possible. 
 
It may be necessary to interrupt the execution of the current plan, for example if the opponent 
creates a threat and a counter plan is required.  
 
It is possible to switch between to different plans in order to confuse the opponent. It too is possible 
that new information may lead to a preference for alternative plans. Much variance and flexibility 
may be present in the approach of a human player. Besides plan orientation and technical 
competence human players let themselves guide by categories like “be unpredictable”, “apply bluffs” 
and “observe the opponent and use psychological opportunities”. 
 
Is it possible to let the computer think like a human being? At the current state of the art this does 
not seem achievable; other ways of decision making are required in a Stratego program. 
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3.2 Decision making by a program 
A computer program can only work with exact rules and quantities. Therefore decision making in a 
Stratego program is model based and rigid. 
 
Literature about expert knowledge in other games often distinguishes strategical and tactical levels 
of decision making. This division into levels of decision making may also be a valid approach for a 
model based approach of Stratego. So here three levels of decision making are distinguished: 

 Strategic decision making 
On a global level the player makes choices which influence will be felt over a period of tens or 
even hundreds of moves. These choices restrict possible choices on a lower level of decision 
making. 

 Tactical decision making 
The player recognises goals within the framework of the strategy. An analysis of goals shows 
what their relative value is and what moves may attain these goals. 

 The choice of moves in an actual game position 
The player determines which moves fit within the framework of strategy and tactics. Only moves 
that fulfil these criteria are relevant and lead to the choice of a move in the current game 
position. 

 
What’s written here about strategy and tactics is not really original. But a rather strange fact is that in 
academic literature about Stratego programming little or no explicit attention has been given to 
strategy or tactics as a factor of influence for the choice of moves. The word “strategy” is used in a 
diffuse way and descriptions of game knowledge are only global and fragmentary. Even in an article 
about the using of domain-dependent knowledge in Stratego [JM2] a division in strategy, tactics and 
move choice is absent. Because so little research has been done to these subjects this is an 
interesting area for improving the playing strength . 

3.3 Decision making by rules or domain-independent methods 
The human decision process is based on systematic thinking according to plans. From knowledge and 
experience a human player makes choices within that framework. This is a complex thought process 
that is hard to express into rules. In computer programs it is possible to avoid the complexity of this 
thought process by the replacement of this thought process by the brute force analysis of a search 
tree or other methods. Methods that are only rule based have a serious handicap. Their decision 
process only can be an incomplete representation of the human thought process. Even for a strongly 
reduced representation it is a heavy task to produce survey-able and maintainable program code and 
data structures. Therefore it is advisable to apply – wherever possible and meaningful – a decision 
process by domain-independent methods. 

3.4 The choice of an initial setup 
Preceding to the game the program chooses a setup that is sufficiently playable and unpredictable. 
Eventually the program takes into account what kind of position the opponent has used in the past . 
 
There exists some literature about the generation of setups [VB], but the descriptions do not contain 
sufficiently detailed information for the development of an algorithm. Farther research in this area is 
necessary. The Gravon database contains a large number of setups and games, but a classification of 
the available setups is necessary for the accessibility of positions in this database. Maybe it is 
possible to develop algorithms that generate sufficiently playable and unpredictable setups from 
statistical data in the Gravon database . 
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4 Long term decision making: strategic choices 
A goal of strategy is to enforce long term coherence between moves. The player makes choices that 
have influence on the choice of moves during a period of tens or hundreds of moves. Strategy cannot 
be determined by computing but is based on human knowledge and experience. So programming of 
strategy requires game knowledge. In literature only some general and fragmentary remarks are 
available about strategy. This document contains a first attempt to define a framework for strategic 
game knowledge. What is written here probably is not the ultimate truth about strategy in Stratego, 
but somebody has to make a starting point. So here are presented characteristics that the author of 
this document has learned by a study of Stratego games in the Gravon database and by playing 
(mostly for fun) against Stratego programs. 
 
In Stratego strategic decision making refers to: 

 Areas 

 Invincible ranks 

 Valuation of ranks 

 Ranks and probabilities for unknown pieces 

 Distribution of most important ranks over the board 

 Material balance 

 Control of risk 

 Conservative or expansive approach. 
 
The following scheme shows the main functions that play a role in the determination of a strategy. 
 

Select a strategy

Demarcate areas
Detect invincible 

ranks

Select a valuation 

scale

Determine the 

material balance

Select norms for 

the management 

of risk

Select an 

expansive or 

conservative 

(sub)strategy

Analyse by strategical rules and patterns
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4.1 Areas 
Three lanes exist between the lakes. Corresponding to these lanes three areas exist where pieces can 
move. In the initial setup these areas consist of four empty squares, but as pieces leave the board the 
size of these areas grows.  
Pieces in one area do not have influence on pieces in a different area. This enables the choice of a 
local strategy for each area . As the game progresses more open connections arise and finally this 
ends in a common strategy for the whole board.  
The choice of a local strategy cannot be done by tree search but depends on human knowledge of 
the game. Somehow rules and their corresponding actions have to be recorded in a Stratego 
program. 

4.2 Invincible ranks 
A rank is invincible if the opponent has no ranks to conquer a piece with the invincible rank; at most 
an exchange is possible. Invincibility arises for the marshal if the spy of the opponent disappears 
from the board. Generals become invincible if the marshals are exchanged. 
A rank can be locally invincible if the opponent has no higher rank in the vicinity. 
The presence of invincible ranks has influence on all facets of strategy and tactics. All decision making 
about strategy and tactics should differentiate with regard to this aspect . 

4.3 Valuation of ranks 
The method of valuation of ranks has a direct influence on various processes: 

 The determination of the material balance 

 Risk management 

 The evaluation of duels. 
The playing strength of a Stratego program is being determined partly by these processes and thus 
by the valuation method too . 
 
Literature mentions a number of different valuation scales with fixed values for ranks. But these 
value components do not have the same meaning in all articles; their value and their ratio differ. 
Authors of these valuation scales define specific corrections for conditions that may occur in game 
positions. 
 
In order to make the valuation scales of different authors comparable in the following scheme a 
considerable amount of the nuances in the original scales have been omitted. 
 

Rank JM KS MS SA VB Study 

Marshal 100 100 100 100 100 100 

General 50 90 75 50 86 95 

Colonel 20 58 44 25 59 77 

Major 10 37 35 19 41 61 

Captain 4 26 25 12½ 28 50 

Lieutenant 2 21 12½ 6¼ 20 42 

Sergeant 1 16 5 4 13 39 

Miner 10 32 25 6¼ 9 39 

Scout ½ 18 2½ 7½ 6 33 

Spy 20 42 25 50 50 95 

Bomb 150 26 19 5 50 42 

Flag 200 316 250 2500 100 - 
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All scales show a gradual decrease of the rank values from marshal to sergeant. This trend is not 
present in the ranks of miner, scout, spy, bomb and flag. 
 
The last column contains the results of a statistical study of the Gravon database by the author of this 
discussion. The base for these values is the material gain that has been achieved per rank in about a 
million duels of about 29.000 games. The value of the flag depends on the method of decision 
making in a program and therefore has not been recorded in the last column.  
 
The valuation scale has a relevant influence on the quality of various crucial decisions that a Stratego 
program makes. The quality of the decision process is the final measure for the quality of a valuation 
scale. The influence of the values in a valuation scale should be traceable. That requires extra 
facilities in the program. Only then it is possible to determine by trial and error which valuation scale 
is effective. 
 
Most authors have the opinion that eventually values of ranks can change in accordance with certain 
conditions that can occur during a game.  
 
Here follow some examples of conditions that may alter the basic value of a rank: 

 An increase of the value if the number of available pieces decreases 

This tendency has been mentioned by Vincent de Boer [VB] in his thesis.  

In particular this kind of condition is applicable to ranks with special abilities like miners and 

scouts. 

 A high rank plus spy may offset a marshal 

The exchange of a marshal against a general may be favourable if the marshal of the opponent is 

known and the own general is unattainable for the marshal of the opponent. The locally 

invincible general may conquer material and the marshal has to beware of the spy. But other 

conditions favour a non-capture of the general by the marshal. 

 If a bomb blocks access to the flag then it has a large value 

But when the rank of a bomb has been exposed and the bomb does not block access to a 

relevant area or valuable pieces then its value is almost zero. The capture of such bombs by a 

miner has no added value at all. 

 

Many more examples may be given. A separate document “Static value of ranks in Stratego” contains 

a more elaborate survey of basic values and value variations. This shows that it will be necessary to 

implement dependencies on more and other conditions than have been mentioned by authors in 

current literature . 

 

The rules for the valuation of ranks have to be recorded somehow in a Stratego program. This may 

be done by the use of: 

 Hard coding in the program 

 Decision tables 

 An expert system. 

Probably the use of decision tables is a good choice, because as insight in real valuation grows it will 

be necessary to change and / or extend the rules. The number of rules is too small to require the use 

of an expert system.  

  



Starting points for improvement for Stratego programming 

9 
 

4.4 Ranks and probabilities for unknown pieces 

4.4.1 Positions on the board have various probabilities  
At the start of a game the ranks of the pieces of the opponent are unknown. Theoretically the 
probability distribution of ranks is the same for every piece and square. 
 

Rank Number Probability 

Marshal 1 0,0250 

General 1 0,0250 

Colonel 2 0,0500 

Major 3 0,0750 

Captain 4 0,1000 

Lieutenant 4 0,1000 

Sergeant 4 0,1000 

Miner 5 0,1250 

Scout 8 0,2000 

Spy 1 0,0250 

Bomb 6 0,1500 

Flag 1 0,0250 

 
The Gravon database contains a large number of Stratego games. A study of the setups shows that 
the probability distribution of the ranks for an unknown piece is different for each square on the 
board. That’s no surprise. Human players do not place pieces at random in the setup but give 
positions to the pieces in accordance with a plan-based approach.  

4.4.2 Events on the board change probabilities 
The probability distribution for all unknown pieces changes if the probability distribution of one or 
more unknown pieces changes. Therefore the following events lead to a recalculation of the 
probability distributions: 

 An unknown piece moves; then it cannot be a bomb or the flag 

 An unknown piece is being involved with a duel and its rank becomes known. 
In his thesis Vincent de Boer has described an algorithm for the recalculation of probability 
distributions and has given the name “normalizing of probabilities” to this algorithm [VB]. 
 
An academic research to pattern recognition in moves has shown that patterns in moves are able to 
give information about the ranks of unknown pieces [JS]. So pattern recognition in moves too 
changes probabilities and may lead to a recalculation of the probability distributions of ranks . 
 
Human players (and probably computer programs too) often use standard concepts in their setups. If 
a program saves setups and games then during the progress of a game it may recognise patterns and 
use these patterns as an indication of the ranks of unknown pieces in an actual game . 

4.4.3 Complicating factors 
The recognition of bluff is an integral part of the recognition of unknown pieces from characteristics 
of positions or moves. There is no current theory for the recognition and handling of bluff . 
 
Many setups and games in the Gravon database have a low level of quality. This diminishes the 
reliability and relevance of statistical data that come from this database. If it is possible to select 
setups and games on quality criteria then statistical data of that selection are more useful for the 
detection of real improvements than statistical data of all setups and games .  
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4.5 Best guess or average rank in search trees 
There are two different methods of accommodating an unknown piece in a search tree: 

 Average rank 
The unknown piece is processed as a weighted average of pieces with a known rank. This method 
had been applied in academic research of brute force search trees analysis for games with 
incomplete information.  

 Best guess 
The unknown piece is processed as a piece with a known rank. The rank with the highest 
probability is chosen from the possible ranks. This method is a heuristic. It has been described by 
Imer Satz, the author of the program Probe that’s the current world champion program.  

An interesting question is whether (and if so why) this heuristic gives better results than the brute 
force approach. This is a subject that requires further research .  

4.6 Distribution of most important ranks 
Initial setups (for example setups in the Gravon database) can be classified in accordance with their 
distribution of the most important ranks over areas of the board. The statistical data in a 
classification system can be applied to infer unknown positions of other important high ranked 
pieces from known positions of important high ranked pieces . 

4.7 Material balance 
The material balance determines the long term approach of a game. For some conditions the 
approach is obvious: 

 Decisive material gain 
Encirclement of the opponent nearly always leads to the winning of the game 

 Decisive material loss 
The side with this disadvantage should stake everything and surrender if this fails  

 All bombs are known 
Pieces with an invincible rank now freely can capture any piece of the opponent. 

 All bombs but one are known 
If enough own pieces with an invincible rank are available then it is justified to gamble by 
capturing any unknown piece of the opponent with an invincible piece. 

In case of a different material balance more choices in strategy are possible. No theory is available 
that describes which strategy is most effective under which conditions .  
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4.8 Control of risk 
In an environment of uncertainty and lack of information actions have a speculative character. To 
some extent probabilities can be estimated and patterns recognized. In duels with unknown ranks 
the question arises what the conditions are for the taking or refusing of risk. Then not only has the 
calculus of probabilities to play a role. Regardless of the amount of probability serious Stratego 
players always will take into account what the long term perspectives are after a possible loss. Often 
players will abandon the capture of a piece if they can continue without risk a strategy that offers 
perspectives.  
 
Both qualitative conditions and numbers are necessary for the control of risk: 

 The choice with regard to an action is based on the material balance that originates if the action 
is performed or omitted. 

 If a duel is speculative than the measure of willingness to take risks should be varied randomly, 
both within a game and throughout different games. This prevents that human players after 
playing a number of games discover regularities in the playing methods of the program and will 
be able to profit from these experiences. 

 The valuation of the material balance depends on the scale of values that has been chosen for 
the valuation of pieces inclusive of their positions. 

 
There is no theory of the limits for acceptable risk in Stratego . The use of bluff too is theoretically 
unexplored area . A study of gains and losses of moves to an unknown rank in the Gravon database 
may produce rules for what is acceptable risk and what is not an acceptable risk. Maybe methods can 
be used that have been proven effective in other speculative games like Poker.  
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4.9 A conservative or expansive approach 
Two opposite strategic styles can be distinguished: 

 Conservative 
Emphasis lays on control over areas, evasion of loss and engaging into save duels.  
Often a player reacts immediately on moves of the opponent in order to extract a maximum of 
information from events happening on the board. An important rule is to move a minimum 
number of pieces. 

 Expansive 
Emphasis lays on the conquest of areas and pieces; if probabilities are favourable then risks are 
accepted. The primary goal has priority. Often outside the area of the primary goal manoeuvres 
or small threats of the opponent are totally ignored. Minimisation of the number of moved 
pieces may be rejected in favour of enlarging the chances for conquest of area or material. 

Between these extremes all kinds of intermediate forms exist. Moreover it is possible to apply locally 
different strategies in different areas. 
 
It’s not clear which of these extremes offers the best probability to win a game. Human players are 
flexible and intuitively choose one of these strategies if in their opinion their choice may give best 
results in a certain position. Eventually they change their approach during a game. 
 
A computer program should be able to apply both a conservative and an expansive strategy but has 
to make a choice, mostly locally in an area. A program cannot base its decision on intuition. The 
choice for conservative  expansive is being determined by strategical characteristics that have 
been described in the foregoing paragraphs (choice of area, invincibility of ranks, value scales for 
ranks, material balance and risk control).  
 
In situations of material balance the program should vary between conservative and expansive, both 
within a game and throughout different games. This prevents that human players after playing a 
number of games discover regularities in the playing methods of the program and will be able to 
profit from these experiences. 
 
Knowledge of the game is necessary to determine effective rules for the choice of a conservative or 
expansive approach in an area of the board. At this moment such knowledge is only available in the 
heads of Stratego experts. Research is necessary in order to get this knowledge available for Stratego 
programming .  
 
Examples of some strategical issues can be found in appendix A.  
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5 Middle term decision making: tactical choices 

5.1 Coherence and goal 
Middle term choices are directed towards coherence of moves within the framework of a strategy. 
Moves show middle term coherence if they are aimed at a common goal. Coherence may be present 
in the moves that one piece does successively. Coherence can be applied too at successive moves by 
different pieces. Mostly tactical goals are related to a possible duel between pieces, but also it may 
be of importance to have control over access to an area. The tactical issue is to detect offensive and 
defensive goals, to evaluate these goals and to determine priorities. 
 
The following scheme shows the main functions that play a role in the determination of tactics. 
 

Select tactical goals

Detect goals

Detect free paths Detect goals
Determine 

involved pieces

Evaluate goals

Analyse by local 

search trees

Evaluate and 

compare goals

Analyse by tactical 

rules and patterns
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5.2 Offensive goals 
Pieces of the own side may engage into a duel with pieces of the other side. Usually a distance 
should be bridged before the duel has been affected. Pieces of the opponent may keep their 
positions, but it is possible that they will do moves in order to evade a duel. 
 
This document contains descriptions of 15 offensive themes in appendix B: 

 Goals in the initial phase 

 Explore significant spots 

 Explore significant pieces 

 No sideway mobility 

 Restricted sideway mobility 

 Encirclement 

 Bulldozer attack 

 Chase with a fork 

 Explore and conquer 

 Control in an area 

 A siege 

 Exchange of a defender 

 Bind a high rank 

 Stalking at the right moment 

 Forced moves. 
 
Most of the offensive themes are about duels and in most themes a restricted number of pieces are 
being involved directly in an eventually possible duel. Involvement of pieces may extend to pieces 
that are not directly engaged into a duel. Examples: 

 It may be necessary to mobilise a piece by moves of a blocking piece 

 It may be favourable to have more freedom of choice of ranks for a duel and therefore to 
advance extra pieces towards the target square of a duel. 

 
Besides the conquest of pieces the conquest of positions too may be of importance. Mostly this 
relates to a position for a piece with a high rank. In that position the high ranked piece realises a free 
passage for pieces with lower ranks. 
 
The choice of offensive goals too is being determined by the current strategy. An expansive strategy 
is directed to the conquest of terrain. In that case offensive goals lay in the same area. In case of a 
conservative strategy the choice of goals is not restricted to an area and priority is given to the save 
discovery and conquest of high ranked pieces. 
 
A material unbalance (both gain and loss) may be a reason to accept more risk in the capture of 
unknown pieces. Preferably such high risk attacks are directed to squares with the lowest probability 
of an unfortunate outcome. For human players it is difficult to maintain a matrix of probabilities for 
ranks, a program can do this job much better by using statistical data from the Gravon database and 
maintain probabilities with the normalization algorithm by Vincent de Boer. 
 
Bluffs may be done in offensive actions but in most offensive themes the results of bluffs disappear 
as soon as a bluff has been unmasked. Only in a few offensive themes a bluff offers significant 
opportunities for a material gain (An example is the bulldozer attack). The power of bluffs mostly lies 
in a temporary disturbance of actions by the opponent and there the bluff primarily serves a 
defensive goal. 
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In his thesis Vincent de Boer describes a few offensive plans [VB] and mentions that more plans are 
necessary in a Stratego program.  
 
Probably the list of offensive themes is not complete. If the reader of this document knows more 
offensive themes then suggestions are welcome .  
 

5.3 Defensive goals 
Pieces of the own side can be the target of pieces of the other side, specifically if they have been 
moved or if their rank is known. Such targets are still more suitable to attack if the opponent 
possesses (locally) invincible pieces.  
 
Involvement of pieces may extend to pieces that are not directly engaged into a duel. Examples: 

 A high ranked piece can block access to a threatened piece thereby preventing that a duel will 
take place 

 A piece with a low rank can be placed before a high ranked piece in order to prevent the 
detection of the rank of the high ranked piece. 

 
Various methods are available to prevent the loss of a piece: 

 Evasion of a threat 

 Protection by a high ranked piece 

 Interception of the attacker 

 Mobilize potential targets 

 Long distance protection by a high ranked piece 

 Explore the unknown rank of a candidate attacker 

 Prevent detection of a high ranked piece. 
 
Bluffs may be used to simulate protection. 
 
Sometimes a complete reorganisation is necessary to realise an effective defence. Particularly this 
occurs when own moved or known pieces may be lost against a piece with an invincible rank. 
 
The list of defensive themes probably is not complete. If a reader of this document knows relevant 
extensions then suggestions are welcome. 
 
Appendix C shows examples of defensive goals . 
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5.4 Rule based decision or local goal directed search trees 

5.4.1 The choice of a decision method 
On the tactical level game knowledge is complex and voluminous. By lack of game knowledge a 
program author often has to start from nothing. An elementary and probably incomplete set of rules 
may be used as the starting point for a long period of trial and error. The progress in understanding 
and knowledge of the game requires a corresponding stream of changes in the decision structure. 
Serious issues are the survey-ability and maintainability of data in the decision structure.  
There are methods to record game knowledge in decision structures: 

 Decision rules can be hard coded in a program 
This is can be done for rules that are resistant to changes by progress in game knowledge 

 Decision tables that relate conditions to actions  
Values in such structures can be changed and extended, but as the volume grows the burden of 
their maintenance may grow exponentially 

 Expert system 
Such systems normally offer means to manage the burden of maintenance for large volumes of 
rules. A description of the implementation of an adaptable expert system in Stratego can be 
found in the thesis of Mohannad Ismail [MI].  

Complexity, volume and progress by trial and error suggest the use of an expert system for tactical 
rules and decisions. 
 
But it is rather simpler to use local goal oriented search trees: 

 Determine which pieces of the own side are involved with the duel 

 Determine which pieces of the other side are involved with the duel 

 Evaluate a local search tree of goal directed moves with the pieces that are involved. 
 
The concept of local search trees is not new; for example under various names like “tactical search” it 
has already been applied in some Go programs [WP2]. This concept perfectly suits to Stratego 
because many tactical actions in Stratego are restricted to a limited number of pieces and a delimited 
area of the board . 
 
Probably it is not possible to cover all aspects of tactical decision making by local search trees. A 
hybrid of partly local search trees and partly game rules probably offers here the optimal solution. 
 
For more information refer to: 

 local search trees [WP3] 

 expert systems [WP4] 

 decision tables [WP5]. 

5.4.2 Selective or brute force 
It is possible to include all legal moves in the search tree or to apply selection of moves. Selectivity 
may be applied to pieces, but also it is possible to select on move characteristics, for example only 
forward and sideward moves. 
 
Selectivity may lead to the overlook of tactical opportunities. But selectivity too may lead to the 
detection of more deeply hidden opportunities by enlarging the search horizon. No literature about 
the effects of selectivity in search trees of Stratego is available, so considerations about this subject 
are speculative. Maybe selectivity works better in Stratego than in games with complete information 
like chess. Because at this moment there is no certainty about the effects of selectivity this is an 
interesting area for research .  
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5.4.3 Improving efficiency in goal oriented search trees 
An issue is that the distance between goal related pieces may be too large. Then the local search tree 
mostly consists of moves that bridge a distance. This may require so many moves that relevant duels 
or positions will not lie within the horizon of the search tree. Possible solutions for restrictions of the 
horizon are: 

 Use “jump moves” instead of normal moves in search trees 

 Use selectivity in order to increase the search depth 

 Use static look ahead functions to prune the search tree. 
These ways to improve efficiency in a local tree search are illustrated in appendix D .  
 

5.5 Algorithms that provide static look ahead 
Probably it is possible to apply static look ahead exactly in the following situations: 

 More than two pieces engage into a duel. 

 An attacker threatens a piece with a restriction to sideway moves. 

 A piece can be encircled. 

 A bulldozer attack. 

 Attack with a fork. 

 Interception of an attacker that tries to attain a target. 
If this kind of situation is present in a game the result of a tactical action is obvious for a somewhat 
advanced Stratego player. Then it should be possible to define formal rules for these situations and 
to program code from these rules. Probably the development of algorithms for these situations will 
result into a relevant improvement of the playing strength . 
 
In appendices B and C some examples can be found of possible types of look ahead. 

5.6 Evaluation of goals 
The evaluation of goals (by static look ahead of a local search tree) leads to values for the goals. The 
values can be compared and so the priority of goals can be determined. Moves that are required for 
a goal get a value that is deduced from the value of the goal. 
Literature does not mention anything about the valuation and evaluation of goals so knowledge 
about this aspect of the game has to be developed from nothing . 
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6 Short term decision making: the final choice of a move 

6.1 Search trees without top-down strategy and tactics 
This is the method that has been implemented in academic research of search trees in Stratego. No 
or almost no attention has been spent to separate functions for decision making on the level of 
strategics and tactics. In the search tree moves are evaluated by material or positional factors. All 
possible moves are included in the tree; principally the analysis of the tree is brute force. In most 
studies there is a lack of functions that expand the horizon by static look ahead.  

6.2 Search trees with top-down strategy and tactics 
The strategical and tactical analysis produces best moves from local tree searches or from rule based 
decision methods. A choice out of these best moves should be made. Other kinds of data too can be 
made available. These products of the pre-analysis should be used in the final tree search that 
determines the best move.  
 
The following scheme shows the main functions that play a role in the move selection. 
 

Select a move

Transfer 

strategical and 

tactical data

Use transferred 

data in node 

evalution and 

move selection

Perform an 

analysis by move 

tree search

 
 

6.2.1 The transfer of best moves 
The pre-analysis by local search trees or rule based decision methods produces corresponding best 
moves. These moves may be used as selection criteria in the root position of the final tree search . 

6.2.2 The transfer of other moves 
It is possible to restrict the final search tree to moves that have been present in one or more of the 
local tree searches.  

6.2.3 The transfer of node values 
Transposition tables may be used to transfer node values from local search trees to corresponding 
nodes in the final tree search. For a short discussion of transposition tables refer to [SA]. 

6.2.4 Positional values 
It is possible to assign rank or even piece specific positional values to squares on the board. This may 
be used as a method to stimulate moves to squares that lead to goals over the horizon of a move 
tree search .   

6.2.5 Brute force or move selection (or both) 
The final tree search analysis can be realised as a brute force analysis or as an analysis with some 
kind of move selection. It too is possible to apply a search with selection first and repeat the same 
analysis without selection as long as processing time allows.  

6.2.6 Predictability 
If the program has the choice between nearly equivalent moves than the program should make a 
random choice. This prevents the detection of rigid habits and the use that can be made of them. 
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7 Overview of opportunities for improvement by game knowledge 
 
Here follows an overview of: 

 starting points for improvement in Stratego by game knowledge 

 the status quo of academic literature and / or research 

 an estimate of the impact of improvements with regard to the status quo. 
 

Starting point for improvement and strengthening Literature and research Impact 

Classification of initial setups None Small 

Generating and valuation of initial setups Some incomplete information Small 

Valuation of ranks Some incomplete information Middle 

Theory of probability for unknown ranks Has been worked out Small 

Recognition of ranks with patterns in game positions Only bomb flag patterns Large 

Recognition of ranks with patterns in moves Some incomplete information Large 

Handling of unknown ranks in search trees Some incomplete information Large 

Material balance None Middle 

Control of risk None Large 

Conservative or expansive approach None Middle 

Choice of goals and pieces involved with goals None Large 

Local search trees Only in other games Large 

Static look ahead Some incomplete information Very large 

Selectivity None Large 

Jump moves None Large 

 

Some relevant categories are not mentioned explicitly in this scheme: 

 Bluff 

 The use of game knowledge by means of an expert system. 

They are not mentioned apart because they are an integral part of the points of improvement. 

 

Bluff can be worked out in three points of improvement: 

 Recognition of ranks with patterns in game positions 

 Recognition of ranks with patterns in moves 

 Control of risk. 

The use of game knowledge by means of a tailor made expert system can be worked out in the 

following points of improvement: 

 Valuation of ranks 
Determination of the right valuation scale for ranks 

 Recognition of ranks with patterns in initial game positions 

 Recognition of ranks with patterns in moves 

 Determination of the material balance 
The qualitative part that cannot be determined by numbers and computation  

 Control of risk 
The qualitative part that cannot be determined by numbers and computation 

 Choice between a conservative or expansive approach 

 Determination of goals and pieces involved with goals. 
 
Probably the data representations of game knowledge are specific for these subjects. In that case 
corresponding specific and apart expert systems will be required.  
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8 Concept of a Stratego program with effective improvements 

8.1 The authors opinion 
A top-down approach from strategy to tactics and the choice of a best move in a search tree can be 
realised in a Stratego program with the following processes: 
 

Select a strategy

Select tactical goals

Select a move

Demarcate areas
Detect invincible 

ranks

Select a valuation 

scale

Determine the 

material balance

Select norms for 

the management 

of risk
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Detect free paths Detect goals
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involved pieces
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search trees
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rules and patterns

Transfer 
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Use transferred 
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Perform an 

analysis by move 

tree search
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The use of game knowledge is crucial for improvement of the playing strength. Strategical decisions 

are rule based. Tactical decisions are both rule based and tree search based. The final choice of a 

move is search tree based. So game knowledge only is required for strategic and tactical decisions. 

More specifically a tailor made expert system will be required for the following processes: 

 Determination of the right valuation scale for ranks 

 Determination of the material balance 

 Management of risk 

 Choice between a conservative or expansive approach 

 Determination of tactical goals and the pieces involved 

 Recognition of patterns in initial game positions 

 Recognition of patterns in moves. 
 
Additionally it will be necessary to define a classification method for initial setups and to develop a 
function that generates initial setups for a program that works as mentioned above. Besides that it 
may be profitable to record the results of games with opponents and use them in future games. 

8.2 Motivation of choices 
The most important reason for the (partially) implementation of search trees is that this method 
takes away a part of the complexity of the decision process. The use of a best guess for the ranks 
instead of an average of ranks looks attractive because it diminishes complexity, it extends the 
horizon of search trees and besides that it will fit to an eventual Monte Carlo approach. But it is an 
approach that requires research and theoretical consideration. Selectivity of moves in Stratego is 
another subject that may be of importance from a theoretical point of view. 
 
If you wish to make a program with only look-ahead then this requires a complex and voluminous 
decision structure that is difficult to create and maintain. For the author of this discussion such an 
approach is unattainable.  
 
The same argument applies to the method of using agents. This requires an extensive 
implementation of game knowledge by rules for each agent. Maybe this burden can be reduced by 
the use of an agent “headquarter” that handles overall strategy and tactics and communicates tasks 
to the agents that represent pieces.  
 
The author has less reserve with regard to the Monte Carlo method. But the author assumes that an 
implementation of this method should be built on experience with a search tree based approach. 
Maybe after the fulfilment of a tree based approach the author will extend activities to a Monte 
Carlo approach. A specific variation – Monte Carlo tree search – has been implemented successfully 
in various GO programs. The value for Stratego is unknown. Probably this domain-independent 
method will be the subject of an academic research project sometime, maybe it already is now. 
 
Genetic algorithms may be used successfully to round off the optimisation of evaluation functions. 
The use of game knowledge to define relevant criteria should precede the optimising process for a 
set of criteria. The author assumes that statistical analysis of the Gravon database is the best way to 
detect winning criteria for moves and initial setups. 
 
So the author has a definite preference for a hybrid of tree search and rule based decision. 
The availability of more literature about tree search in Stratego than other approaches has been an 
extra stimulus for that choice.  
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8.3 Realisation 
 
Here follows an overview of estimations of investments to be done for points of improvement. 
 

Starting point for improvement and strengthening Improvement Investment 

Classification and valuation of initial setups Small Large 

Generating of initial setups Small Large 

Valuation of ranks Middle Middle 

Theory of probability for unknown ranks Small Small 

Recognition of ranks with patterns in game positions Large Middle 

Recognition of ranks with patterns in moves Large Large 

Handling of unknown ranks in search trees Large Small 

Material balance Middle Large 

Control of risk Large Large 

Conservative or expansive approach Middle Small 

Choice of goals and pieces involved with goals Large Small 

Local search trees Large Middle 

Static look ahead Very large Large 
Large means more than 1 year, middle is about 6 months, small is about 2 months. 

 

This will require global activities as shown in the next scheme. 
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At this moment many of the activities in this scheme have not been done nor are descriptions 
available that give adequate information for the building of a program. Most of the improvements 
require some kind of research. Research is necessary for real knowledge of what is effective and best 
practise. The Gravon database is a precious source of statistical data that may be applied to most of 
the points of improvement.  
 
Some progress already has been made by the author: 

 Classification of initial setups 

 Generating and valuation of initial setups 

 An algorithm that handles the two-squares rule (Part of static look ahead) 

 Valuation of ranks. 
At this moment a study of the material balance is being done. A next subject will be the choice of 
goals and pieces involved with goals. This can be combined with the development of algorithms for 
additional kinds of static look ahead. 
 
The requirements in this document show that the making of a Stratego program is a large project. 
The project activities require a considerable amount of time, most of it being preliminary effort. For 
the author of this discussion it will take many years to accomplish all activities in this scheme. The 
building of a Stratego program still is far away. But why hurry? Omission of one (or more than one) of 
these activities will diminish the chances to make a program that plays on a reasonable level. If time, 
health and motivation allow it someday the job will be done. 
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8.4 Legal aspects 
 
Jumbo owns the rights of the game concept and artwork of Stratego. It is forbidden to use the 
artwork of Jumbo Stratego in programs or documents or to attach the name Stratego to a program 
without the explicit permission of Jumbo.  
 
Some Stratego programs with own artwork and names exist and are available on Internet and it is 
usual to mention that a program plays Stratego. This shows that in practice no restrictions are in 
force now (and maybe in the future too) to the publication of non-commercial programs that play 
Stratego.  

8.4.1 Acknowledgements 
The author appreciates that by courtesy of Jumbo it is possible to use pictures with the original 
artwork of Jumbo Stratego in this document. 
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Appendix A: Some examples of strategical issues 

A.1 A large material preponderance 
 

 
 
The preponderance of red consists of 1 colonel + 2 captains against 1 blue major. 
Red controls the lanes. By this encirclement blue is not able to evade the final loss of this game. 
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In this game position too red has a preponderance of 1 colonel and 2 captains against 1 blue major. 
But here the encirclement is not complete. Blue should undertake a kamikaze action with the major 
and find the red flag or lose the major on a bomb.  
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A.2 To capture or not to capture, that’s the question 
 

 
 
There is a material balance and the rank of the blue colonel is known. Take or leave? 
 
There is no need for an immediate capture. So red should postpone the conquest of the blue colonel. 
If an escape of the colonel or exchange of marshals becomes possible then again red should make a 
decision about this choice. 
 
It is important to detect the position of the blue general. If red takes the blue colonel and loses the 
marshal then generals should be exchanged as soon as possible.  
This would lead to a position with 2 red colonels + a red spy against 1 blue colonel + 1 blue marshal. 
Strategically this is a position with equal chances for both sides. 
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A.3 Strategically preference for a capture 
 
The red captain may capture the blue sergeant or the blue lieutenant. The conquest of the blue 
lieutenant may lead to the loss of the captain. This will slow down the conquest of terrain in the left 
area of the board. In an expansive strategy the efficient and quick conquest of terrain is more 
important than the material gain of a lieutenant. Red should take the blue sergeant and capture the 
unknown piece on B9. This manoeuvre will lead to the save conquest of square B8 for the marshal. 
On that position the marshal protects the march of lower ranks over the A line. This enables a march 
of red over the tenth row. Blue can only resist this kind of march if blue has chosen an initial setup 
that was specifically meant to resist a march through the back row.  
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A.4 An initial setup that enables an expansive strategy 
 

 
 
A locally expansive strategy is possible in both the left and the middle lane. Possible march routes: 
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Small adaptions to these routes are possible in order to diminish predictability. 
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A.5 Rank of the own marshal is known 
 

 
 
Until now red has kept to a conservative strategy. A blue scout just has discovered the rank of the 
red marshal. Now red should change to an expansive local strategy in the left area. 
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A.6 Rank of the opponent marshal is known 
 

 
 
The rank of the blue marshal just has been discovered. 
Red should change the locally passive strategy in the left area to an expansive local strategy, because 
the general will be locally invincible as long as blue pieces are blocking access to the red general. 
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A.7 Defence against an invincible general 
 

 
 
As soon as a piece of the opponent has gotten invincibility defensive measures should get priority. 
Sometimes extensive measures are necessary.  
In this example the ranks of the blue general and red marshal just have been discovered. The rank of 
the red major on B4 is known. Only a direct and complete reorganisation of piece positions prevents 
the loss of the red major in this game position. 
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Appendix B: Some examples of offensive goals 

B.1 Discover ranks 

B.1.1 Initial setups 
 

 
 
The arrows show potential targets in the initial position.  
No literature is available about this situation. The following is the author’s opinion. It is possible that 
real Stratego experts have other ideas. 
The front positions mostly are occupied by sergeants, lieutenants or captains. Other ranks are less 
effective. The ranks of potential attackers too should be sergeant, lieutenant or captain.  
Other ranks should not be used to explore unknown pieces: 

 Scouts 
Their long distance potential is wasted and the revenues are low. 

 Miners 
They are needed for the removal of blocking bombs 

 Otherwise 
Too much value is at stake. The loss of a major is compensated only by the discovery of a marshal 
or general of the opponent. If a major is lost to a colonel then this only is acceptable if the 
colonel of the opponent will be captured.   
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B.1.2 Explore an eventually relevant spot 
 

 
 
If the rank of a blue colonel on E8 becomes known then probably the rank of an unknown piece on 
D7 is interesting. There is a small but definite probability on the pattern of a triangle consisting of a 
spy on D8, a general on D7 and a colonel on E8.  
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B.1.3 A search for the spy 
 

 
 
The scout on E2 moves to E7 in order to check what rank stands on F7. 
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B.2 Conquer material 

B.2.1 No sideway mobility at all 
 

 
 
The marshal moves to C7. The colonel on C8 cannot make a sideway move and can be captured. 
This kind of capture can be foreseen and is suitable for the implementation in a static look ahead 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
  



Starting points for improvement for Stratego programming 

38 
 

B.2.2 Sideway mobility restricted to two columns or rows 
 

 
 
The sideway mobility of the blue miner is restricted to two columns. 
The two-squares rule is in force. The miner will be captured by the sergeant. 
This kind of capture can be foreseen and is suitable for the implementation in a static look ahead 

algorithm.  
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The sideway mobility of the miner is restricted to two columns. 
The two-squares rule is in force. The miner can evade any attack of the sergeant. 
This kind of evasion can be foreseen and is suitable for the implementation in a static look ahead 
algorithm. 
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B.2.4 Encirclement 
 

 
 
The red colonel can chase the blue major to E7, where the red general can capture the major. 
This kind of chase works fine if the red general and colonel are invincible. If not, then this 
encirclement probably is too risky for the red colonel. 
This kind of capture and its risk can be foreseen and is suitable for the implementation in a static look 
ahead algorithm. 
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B.2.4 The bulldozer attack 
 
This is a special variation of encirclement, but it is interesting because of its bluffing possibilities. 

 

 
 

The blue major has a known rank, but the red marshal and colonel do not have a known rank. 

The blue major will be captured. 
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In this position the blue major has a known rank too. 

The red attackers on J6 and K6 do not have a known rank. 

For blue this position looks the same as the previous position. 

 

This shows a dilemma for blue. Red may bluff, but which red piece should be considered as a real 

attacker and which not? 

 

This kind of bluff can be used if a piece of the opponent cannot be conquered by the two-squares 

rule. It has a 50 % probability of success. 

 

It may seem risky to expose the red major to high ranked blue pieces on H7, H8 or J9 but blue should 

consider the probability that the red piece on J6 has the rank of marshal. This kind of situations offers 

a though challenge for decision making to both human and computer players. 
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This is the real thing. 

Red hopes that a bluff with a sergeant will lead to the capture of the blue major. The reward of 

winning a piece by a successful bluff is enough to accept the 50 % probable loss of a sergeant. 
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B.2.5 Chase with a fork  
 

 
 
The red marshal can chase the major over E7. At E7 the marshal threatens the capture of both the 
blue major and the blue colonel. 
This kind of chase works fine if the red marshal is invincible. If not, then this chase probably is too 
risky for the red marshal. 
This kind of capture and its risk can be foreseen and is suitable for the implementation in a static look 
ahead algorithm. 
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B.3 Explore and conquer 
 

 
 
A cooperative unit has been sent into the left blue area. The captain will explore B7 and if a blue 
major captures the captain then the blue major will be captured by the red colonel. 
There are some risks, but teams like this one gain material so often that on a par the result is 
positive. Some other combinations of a low and (middle) high rank too have more success than 
failure. 
 
Here the higher rank keeps close to the exploring piece, but it also is possible to keep the colonel on 
its initial position and move only the captain into the blue area. Many patterns are possible. Human 
players use much variation in move pattern and team contents. Often a scout is used and mimics the 
behaviour of the lower or higher rank in a team. The intention of this bluff technique is to provoke 
and thereby to discover a high rank of the opponent. 
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B.4 Control in an area 
 

 
 
The red marshal has been placed with some risk on F8 and enables on that position the march of 
lower ranked pieces over the E column. Note that some blue pieces with lower ranks (the sergeant 
on D7 and the captain on G8) are not captured, because they block the defence. The long-term goal 
is to conquer the E column and the tenth row. 
If necessary and meaningful a good playing opponent may sacrifice blocking pieces in order to open 
connections for the defence against this strategy. 
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B.5 A siege 
 

 
 
After the discovery of a bomb barrier an attack can be arranged to the area behind this barrier. 
Here the main target is the bomb on K9. The miner on H7 has to be moved to K8. When the miner 
has arrived there is no need for hurry. It’s a good practice to postpone the capture of the bomb and 
to move other pieces as near as possible to the target area. 
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This is the ideal preparation of a capture on K9. If some blue piece captures the miner on K9 then a 
choice out of three ranks has been enabled by the groundwork done before the breakthrough. 
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B.7 Exchange of a defender 
 

 
 

After the discovery of a bomb on K9 the attack on this bomb by a miner is being blocked by a blue 

colonel on K8. The two-squares rule prevents the capture of this colonel by the red marshal. The 

blockade can be removed by an exchange of colonels. After the exchange the red miner can march to 

the bomb on K9. 
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B.8 Bind a high rank 
 

 
 
If the blue marshal leaves H7 then the blue major on G7 will be captured. Therefore the blue marshal 
is tied to the blue major. Any red piece (maybe even the spy) may enter the square J7 with little risk 
to be captured by the marshal. 
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B.9 Stalking at the right moment  
 
This is a “technique” only to be used against human opponents. 
 

 
 
The known red major cannot capture the known blue captain, because the blue captain can evade 
threats by use of the two squares rule. But maybe the captain may be won if the blue (human!) 
opponent is busy with an action. Often a human player concentrates too much on opportunities in 
the own actions. 
In this example a red bomb has been discovered and the last blue move was E6-E5 with an unknown 
piece that (very) probably is a miner. The next move of blue almost certainly will be E5-E4. 
That’s the right moment to do a speculative move with the red major to K6. If the blue captain 
evades this threat then the chase of the captain should stop. But very often a human player’s 
attention will be focused too much on the current move to E4 and then the blue captain will be 
captured. 
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B.10 Forced moves 
 

 
 
In the end game forced moves are an important instrument to win a game. 
 
In this example blue has three bombs, one flag and a general. 
If red is in turn then the game is a draw. But if blue is in turn then red will win because blue can only 
make forced moves. The two-squares rule forbids a continuous defence of squares that offer access 
to the blue flag. Finally the general has to concede a free path to the blue flag. 
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The same principle is in force here. If red is in turn then the game is a draw. But if blue is in turn then 
the red spy can force the blue marshal to a smaller area until there is no escape anymore.  
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Appendix C: Some examples of defensive goals 

C.1 Evasion of a threat 
 

 
 
If the blue marshal moves to E7 then the red general cannot evade the capture by the blue marshal 

because the two squares rule forbids a continuous evasion. Therefore it is necessary to move the red 

general to F3. Then the two squares rule will prevent the capture of the red general by the blue 

marshal. 

This kind of capture and its risk can be foreseen and is suitable for the implementation in a static look 
ahead algorithm. 
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C.2 Protection of a threatened piece 
Some trivial examples of protection follow here. 
 

 
 
The blue captain may be under attack by the red piece on E5 or maybe this only is an illusion of 
attack. If an unknown blue piece moves to E7 then it is supposed to protect the blue captain by the 
high rank it may have. 
 
Nothing is certain. This makes Stratego especially attractive. 
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Again an unknown red piece has been moved to E5 and tries to convince the opponent that the blue 

captain is under attack. If the blue captain retreats to E7 it may find a resort there, but it is possible 

that on that square it too has the same amount of protection as on square E6.  
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C.3 Interception of the attacker 
 

 
 
The unknown blue piece on F6 moves to F5. This looks as a serious threat to capture the red colonel 
on F3 but too it may be a good attempt to discover the position of the red marshal by a blue scout. 
Hopefully the move of the red marshal to E4 really is necessary; else the exposure of the rank has 
been forced at a minimal price. If the blue opponent attacks with a general and does believe the 
move to E4 to be a bluff then red is having a party in this game. 
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C.4 Mobilize potential targets 
 

 
 
The rank of the major on A4 has been discovered. If blue has a colonel or higher on A8 then this 
major will be lost. But if a blue colonel or higher has to come from the B column then the red major 
may be saved if sideway moves between the A and B column are enabled. Therefore the red major 
has to be moved to A5. 
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The red general has been exposed and the blue marshal threats to capture this immobile piece. 

If red sacrifices the red sergeant then the red general gets sideway mobility on the A and B columns. 

Then the two squares rules will prohibit the capture of the red general by the blue marshal. 
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C.5 Long distance protection by the two-squares rule 
Protection can be given by a high ranked piece at a distance. 
 

 
 
Assume in this position that the marshals have been exchanged. The generals are known and 
invincible. An unknown piece on D7 moves to E7 suggesting an attack on the red major. This attack 
will fail because the red general will be able to conquer a blue piece on E6 by use of the two squares 
rule.  
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This position is almost identical to the previous one. 

Here again a piece has been moved to E7 and threats to capture the known red major.  

A move of the red general to E3 will enable the red general to conquer a blue piece on E6. So this will 

prevent the capture of the red major.  
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C.5 Explore the rank of a potential attacker 
 

 
 
In this position the generals are known and invincible. 
The last move of blue is F8-E8 with an unknown piece. 
It is interesting to know what the rank of the unknown piece on E8 is. Use the scout on E2 to discover 
the rank of the piece on E8. Then red knows what to do with the red major. If the blue piece is a 
colonel then the major should retreat to F5. On this square the two squares rule will enable the red 
major to evade a duel with the colonel. 
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Detection may be enabled by placing a guardian piece on an access point 
 

 
 
The scout functions as a guard to be sacrificed when any blue piece tries to enter the red middle 
area. 
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C.7 Prevent detection of a high ranked piece 
 

 
 
A move of the sergeant to E3 will protect the red general on E2 for detection by a blue scout. 
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C.8 Defence by desperado attack 
 

  
 
The blue general has expelled the red captain from I4 to I5. The next move of blue is D7-E7 by a piece 
with unknown rank. Probably (?, nothing is completely sure in Stratego) the goal of this move is the 
encirclement and thereby the capture of the red captain.  
The red captain has no escape from such encirclement. In such cases the best policy is to get 
whatever still may be gotten and send the captain recklessly into the opponent area. 
The captain is able to attain I8 just in time to enter the lines of the opponent and is willing to sacrifice 
itself for any scrap of information or material that may be gained by this manoeuvre. 
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Appendix D: Processing efficiency in local search trees 
 
At first an example to illustrate efficiency aspects in local search trees. 
 

 
 
In 24 moves the red sergeant on K4 is able to capture the blue miner on K7 by use of the two-squares 
rule. Brute force search trees of 24 levels require too much processing time. This example shows that 
a conventional brute force search will not work.  
 
But fortunately in local search trees it is possible to reduce significantly the amount of computer 
processing. Here three techniques are discussed: 

 Detection of goals by jump moves 

 Selectivity by goal directedness 

 Look ahead functions. 
These techniques are heuristics that require game knowledge.  
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D.1 Detection of goals by jump moves 
 

A substantial part of moves in a brute force search tree goes to an empty field that has no opponent 

piece next to it. The function of such moves is to decrease or increase the distance to a target duel. 

But in Stratego the real thing happens in duels. Therefore the only significant moves in a brute force 

search tree are the moves that place an own piece next to a piece of the opponent or engage into a 

duel. Moves to empty squares without a neighbouring piece of the opponent are irrelevant for the 

outcome of duels. Moreover they lead to irrelevant nodes in the search tree. 

 

The removal of irrelevant nodes is a means to reduce the size of the search tree and to focus on the 

core of Stratego game logic. This leads to the idea of “jump moves”.  Allow pieces to jump to squares 

next to opponent pieces. Jump moves can detect goals over a long distance and can show what the 

outcome will be when pieces are within their duelling range.  

 

In reality pieces other than scouts cannot do jump moves. That limits the use of jump moves to the 

detection of long distance goals. If goals are detected it is possible to evaluate the position by: 

 extending the search tree with moves, 

 static evaluation of duels.  

This preliminary evaluation of goals should be used to determine selection criteria for goals. From 

the list of candidate goals only a few goals should be selected as the favourite ones that will be given 

attention in the final choice of a best real move. 

 

In the example on the previous page the jump move K4-K6 covers the distance to the miner at once 

and eliminates the superfluous node that comes from the move K4-K5. This substantially reduces the 

search tree and focusses on the real significant moves for both sides. 

 

Generating of jump moves can be realised with shortest path algorithms. It’s important to maximise 

the efficiency of shortest path algorithms in Stratego programs. In Wikipedia references to shortest 

path algorithms can be found [WP6]. 
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D.2 Selectivity and goal directedness 
There are good reasons to apply selectivity to local search trees in Stratego. Good players comply 
with the strategic rule that information about the own ranks should be minimised. If a piece has been 
moved this exhibits the information that its rank cannot be a bomb or the flag. In order to minimise 
this kind of information the number of moved pieces should be kept minimal. Therefore any goal 
should be attained with a minimum of moved pieces. Thus a player only moves an unmoved piece if 
a good reason for the move exists. If in an area one piece has been moved then there is an obvious 
preference to move only that piece in that area. A local tree search should therefore mainly consist 
of moves with one piece directed to one single goal. Only if a second piece is required for the 
achievement of the current goal then moves of a second piece in the same area may be included in 
the search tree. 
 
This shows that strategic considerations favour a very drastic selectivity in local search trees. In 
games like chess there always is a chance that some far hidden and unexpected move may make the 
difference. This seldom happens in Stratego. Most tactical moves are straightforward attempts to 
enter or evade a duel and require only moves towards or from a target square by one piece. 
Therefore a substantial part of goal directed local search trees should consist of levels with two 
branches: 

 One branch for the move of a piece towards or from a target square in the current area 

 One branch for not doing a move in the current area. 
 

If a goal has been chosen then goal directedness narrows the width of local search trees to such an 

extent that the depth can grow to tens of moves within the limits of acceptable processing times. 

The real effort lies in the detection, evaluation and selection of goals in the search tree.  

This produces a list of candidate goals from which one emerges as the favourite and that goal is a 

beacon for the selection of moves in the local search tree. 

  



Starting points for improvement for Stratego programming 

69 
 

D.2.1 The implementation of goal directedness in the current example 
 

 
 

Red is in turn. Here focus is on the right side. An analysis of goals should produce here a preference 

for an attack of the red sergeant to the blue miner.  

 

A goal directed local search tree for this position only contains: 

 Forward and sideward moves of the red sergeant. 

 Sideward moves of the blue miner 

In other positions the tree may contain backward moves for the defender. 

 Null moves, when the two squares rule forbids a duel evading move by blue. 

In at most 25 moves the blue miner will be captured.  

 

A brute force search tree would require an unacceptable amount of time. 

But the goal directed search tree contains a small amount of nodes. Processing time will be 

drastically reduced to rather acceptable amounts for this kind of positions. 
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D.3 Look-ahead functions in local search trees 
In the preceding appendices some look ahead functions have been mentioned: 

 More than two pieces engage into a duel. 

 An attacker threatens a piece with a restriction to sideway moves. 

 A piece can be encircled. 

 A bulldozer attack may be possible. 

 Two pieces will be the subject of a simultaneous threat after one of them has been chased. 

 Interception of an attacker that tries to attain a target. 
A look ahead detection algorithm should be able to determine whether a game position is apt to the 
application of any of these look ahead functions. 

D.3.1 The implementation of a look ahead function in the current example 
 

 
 

A look ahead function should be able to detect in this position that the two squares rule is in force. 

From static data in the position a two-squares rule algorithm should conclude that the blue miner 

will be captured. So this algorithm should make the current position an end node in the search tree. 

This example shows why look ahead functions will have a drastic impact on processing times in 

search trees. The larger the distance between attacker and defender, the larger is the profit of look 

ahead functions. 
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Appendix E Version history 
 

Version Date Comment 

1 August 2012  

2 June 2017 Paragraph 8.3: project activities require more time 

3 September 2018 Paragraph 2.6: about computer learning for Stratego 

 


