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Internal Work                                                                                              home 
 

1. Introduction 

[….] the time has come to estimate the internal energy expended by a rower owing solely 

to his efforts on the slide; that is, the energy required to move himself to and fro without 

doing any external work [….]. This "internal" work seems to be the big, mysterious 

unknown in rowing calculations. 

(I copied this introduction sentence from an e-mail received from Bill Atkinson) 

In the following analysis this problem is addressed with a simple model that represents 

the situation in the recovery phase only. The drive phase is more complicated because 

kinetic energy in the system can be transferred to the oar handle to do work. 

 

2. Model and theory 

Fig 2.1 shows two masses as already used in other chapters. Fig 2.2 shows the forces on 

the masses using d’Alembert’s principle. 

 

m1 = boat mass 

m2 = rower’s mass 

x = absolute coordinate of the boat 

y = relative coordinate of the rower with respect to the boat (at the start of the recovery 

       y = L,   L = sliding distance) 

z = absolute coordinate of the joint CoM of both boat and rower 

T = cycle time,   =      
C = friction coefficient of hull 
W = hull resistance 
Fl = (leg) force between m1 and m2 
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To define the z-coordinate we write: 

 

  m  m  =  m       m  

 

This expression also yields for the 1rst and 2nd derivative of x, y and z. 

 

Solve for z-acceleration: 

  =
  m         m 

m  m 
 

but also: 
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and: 
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the forcing function is the motion of m2: 

 

  =   .    cos t 

from which follows: 

 

 =  .     cos t  

 

which yields: y = L for t=0, m2 is at the end of the sliding when the recovery starts and 

 

  =   .   sin t 

 

The motion problem is solved by the Simulink system in Fig 3. The blocs with the 

shadow represent the solution of the equation of motion the other blocs are for checking 

and passing data to the Matlab command domain. 

In the model x1 and x2 means    and     and the same for y and z.  

Function bloc y2 contains   =     cos t. 

Function bloc x2 contains : 

  =    
m 

m  m 
 

The blocs Tw... bring the variable mentioned in the bloc to the Matlab work space. 
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Fig 2.3 

Zoom in for reading the text in the model. 

 

In Matlab are performed the following calculations:  

 

Leg force:   = m .         

Leg power = leg force times extension speed of the legs:   =   .    

Power dissipation due to hull friction:   =          

Energy delivered by the legs during the recovery:   =    dt
 

  

 
 

Energy dissipated by hull friction:   =    dt
 

  

 
 

Power and energy of the legs has been split in positive (i.e. delivered by the legs) and 

negative (i.e. absorbed by the system when the system is considered to be conservative) 

parts. 

 

The kinetic energy in the system is the sum of the kinetic energy of m1 and of m2. 

   =  . m   
   and       =  . m           

  =         

The rate of change of the kinetic energy, increase or decrease of energy is a power 

 

   =
d

dt
   =

d

dt
  . m   

  = m      

 

   =
d

dt
   =

d

dt
  . m          = m                

 

The power balance is ΔP = Pl – Ph – Pk1 - Pk2  must → 0.  
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Calculations are performed for the following values of the parameters: 

 

Kept constant Varying Unit 
m1 = 30  kg 
m2 = 70  kg 
L = 0.7  m 
T = 2.0  sec 
 C = 0,  3.5 N.s2.m-2 
 ICx1 = 0.0,  5.0 m/s 
ICx1 = initial condition of boat velocity 
 

Scroll page down  
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3 calculations 

3.1 The first case to consider is  

initial speed = 0 

hull friction = 0 

T = 2 s 

 

 
 

Fig 3.1 Leg power. 
The area A represents the work done by the rower in the first phase of 
the motion. The area B represents the energy, in a conservative system, 
that the system feeds back to the rower. Area A = area B. In a 
nonconservative system area B represents the energy that is dissipated. 
 
 

Discussion: 

In a conservative system no work is done by the rower. The energy delivered in the first 

part of the recovery is recovered in the second part of the recovery. It is unlikely that 

this occurs in the legs of the rower, however, the model calculations do not decide on 

this particular question. 

Let us call the energy represented by the area A, EA (EA>0) and the energy of area B, EB 

(EB<0), and the total energy delivered by the rower is El. 

 

So at least three cases are to be considered: 

El = EA + EB = 0 in this case 

El = EA 

El = EA + |EB| = 2*EA in this case 

 

 A 

  B 



6 

 

 

EA = |EB| = 12.7 J. The energy delivered by the rower is then based on the above 

mentioned possibilities 0, 12.7, or 25.4 J.  

In the following cases will be chosen for the second option. Only energy positively 

delivered by the rower will be counted, based on the following considerations: 

 

According to this author it is most likely that EB is dissipated in the muscles and 

articulations of the rower and disappears as heat out of the system. The first option 

requires elastic properties of human body. To a certain extend they will be present but it 

is difficult to assume enough capacity to store and pay back all EB. In the third case 

energy will be consumed to compensate for other energy.  

 

To be clear it is stated explicitly that in this case no external work has been done indeed. 

All the work done by the rower 0, EA or 2*EA is lost: at the end no kinetic energy is 

present in the system, the joint CoM has not moved, no work on hull friction has been 

done. 

 

EA has the same value as the expression in click here 

 

 =  .       
 

m . m 

m  m 
=   .   

with 

     =  .  
  

 
 

 

A check of the power balance is carried out by plotting ΔP for each integration step. See 
Fig 3.2. 
 
When and where is energy dissipated? Not in the first part of the motion. The legs do 
work, area EA, and that work is converted into kinetic energy. No dissipation of energy. 
Clearly, the energy is dissipated in the second part of the motion. The legs act as a 
damper, kinetic energy is dissipated in heat. Suppose now (right or wrong) that this 
dissipation of energy does not require energy supply from the rower.  
The energy loss is represented by area B. In this particular case it is immaterial whether 
we take magnitude of area A or area B because they are equal. But in next cases to be 
considered they are not.  Let us agree upon that area B represents the energy loss.  
 
Scroll page down 
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Fig 3.2 Power balance. 
This figure shows that ΔP ≈ 0 for every time step (0.001s) 

 
 
Finally Fig 3.3 presents the kinematic energy in the system. 

 

Comparing the work done and the maximum kinetic energy in the system we find  

   . m   
   .  m  m          =    dt

 . 

 
 as expected. (   and    ta en at t =  .  s) 
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Fig 3.3 Kinetic energy in the system. 
red: in m2, rower 
green: in m1, hull 
black: in m1 + m2, system 
 
 

3.2 The second case to consider is:  

initial speed = 0 

hull friction coefficient C= 3.5 N.s2.m-2 

T = 2 s 

It appears that this case does not differ noticeable from the previous case. The reason is 

that the hull friction is very small because the hull velocity is small, maximum value = 

0.76 m/s. 

EA = 13.03 J and EB = 12.43 J. Energy dissipated by hull friction  Eh= 0.6 J. 

Note: EA has increased and EB has decreased with respect to case 1. 

 

3.3 The third case to consider is: 

initial speed = 5 m/s 

hull friction coefficient C= 0 

T = 2 s 

This is not e very practical case but for the understanding of the system it is useful. 

EA = |EB| = 12.7 J exactly the same as for the first case with zero initial speed. Final 

speed = initial speed, hull friction loss is of course zero. 

The difference between maximum kinetic energy (at  t =0.5) and minimum kinetic 

energy (at  t = 0) equals again the work done by the legs EA. We conclude again that this 
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work is lost. At the end of the recover the velocity is the same as at the start and no 

external work has been done. 

 

 
 

Fig 3.4 Kinetic energy in the system. 
red: in m2, rower 
green: in m1, hull 
black: in m1 + m2, system 
 

 

 

3.4 The fourth case to consider is: 

initial speed = 5 m/s 

hull friction coefficient C= 3.5 N.m2.s-2 

T = 2 s 

 

Scroll page down 
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Fig. 3.5 Leg power. 
Compare with Fig 3.5 and notice the difference in EA =46.35 J and EB = 
1.97 J. 
 
 

Summary energy 

Positive work of rower EA = 46.35 J 

Negative work of rower EB = 1.97 J 

Energy by hull friction Eh = 449.38 J 

Decrease of kinetic energy ΔEk = 404.18 J 

 

Energy balance ΔE = EA – EB + Δ k – Eh = -0.82 J  → 0. 

 

Scroll page down  

A 

B 



11 

 

 

 
 

Fig 3.6 Kinetic energy in the system. 
red: in m2, rower 
green: in m1, hull 
black: in m1 + m2, system 
decrease of kinetic energy  Δ k   = Ek (t=0) – Ek (t=1) = 404.18 J 
 
 

 

4 Conclusion 

Based on the presented model and calculations the conclusion would be that in 

frictionless system the rower delivers work that is dissipated internally.  In a real system 

with external friction the amount of energy dissipated internally is very small and 

negligible for practical purposes. 

For the stationary erg, Concept2, the situation is different. Click here 
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