a program for the Sharp EL-9600, EL-9650

and EL-9900 graphing calculators

## A Mastermind game based on numerals instead of colorsPlay the familiar game Mastermind with numerals instead of colors and have a hunt for a secret number. The random number is generated by your calculator. Available 'colors' are the numerals from 1 to 9.
The second examination 5678 leads to [1 1], meaning one right numeral at the right position and one right numeral at a wrong position. From both responses it follows that the number in demand holds no nines. (TI images. The screen examples
This Mastermind game can be played at different levels of difficulty. Just make the program generate a random number with more or less digits. To do so, put in a "0", press Enter more than once to pass through some help screens and select 3, 4, 5, 6, 7 or 8 digits. In case of a six digit number the game could pass as follows.
The first two outcomes indicate a double or triple presence of a numeral in the unknown number. After seven examinations only four possible numbers remain: Memory overflow |

## Program Listing[ Remarks ]MASTRMND Rem MEM IJKZ mat ABC Rem VER200410 [ > 2ndF,PRGM > PRGM > Rem ] [ > MATRIX > NAME > mat A ] ClrT [ > 2ndF,PRGM > SCRN > ClrT ] Print "** MASTERMIND ** Print " Print "BE SURE FSE IS Print "SET TO FLOATPT Print " Print "(SEE SET UP) Print " Print ">> [ > MATH > INEQ > ">" ] Wait 4→K [ → : STO-key ] Label A0 [ > 2ndF,PRGM > BRNCH > Label ] [ A0, not AO ] int K→K [ > MATH > NUM > int ] min(max(3,K),8)→K int (1+9rnd_mat(4,K))→mat A [ > MATRIX > OPE > rnd_mat( ] K+2→Z (ln(396/391)/ln 2)^.5→J [ ^ : a ^{b}-key ](1–1.5J)/(1–J)*Z→mat A(4,1) (1.5Z–mat A(4,1))^2/ln 2→mat A(4,2) {1,4}→dim(mat B) fill(0,mat B) Label A1 ClrT Print "** MASTERMIND ** Print " Print "FIND A NUMBER OF Print K Print "DIGITS. Print "ENTER DIGITS. (HELP:0) Label A2 0→Z Input Z abs(Z)→Z If Z<.1*10^K Goto C0 [ mark the decimal point ] (Z–fPart Z)/10^K→Z Z–int Z→Z Z*10^K→mat B(1,2) 0→mat B(1,3) 0→mat B(1,4) Z→mat A(4,3) row_mult(0,mat A,1)→mat A [ > MATRIX > OPE > row_mult( ] row_plus(mat A,3,1)→mat A 0→J Label A3 J+1→J 10mat A(4,3)→mat A(4,3) int mat A(4,3)→mat A(2,J) If mat A(2,J)=0 Goto C0 mat A(4,3)–mat A(2,J)→mat A(4,3) If J<K Goto A3 0→J Label B0 J+1→J J→I If mat A(1,J)≠mat A(2,I)Goto B1 mat B(1,3)+1→mat B(1,3) -1→mat A(1,J) [ negation symbol (-), [ not subtraction symbol ] -2→mat A(2,I) Label B1 If J<KGoto B0 0→J Label B2 J+1→J 0→I If mat A(1,J)=-1Goto B5 Label B3 I+1→I If mat A(1,J)≠mat A(2,I)Goto B4 mat B(1,4)+1→mat B(1,4) -1→mat A(1,J) -2→mat A(2,I) K→I Label B4 If I<K Goto B3 Label B5 If J<K Goto B2 mat B(1,1)+1→mat B(1,1) If mat B(1,1)=1 Goto B6 trans augment(trans mat C,trans mat B)→mat C [ > MATRIX > MATH > trans ] Goto B7 Label B6 mat B→mat C Label B7 ClrT Print mat C If mat B(1,3)<K Goto A2 Print "HIT! SCORE (MAX.100): mat A(4,1)–mat B(1,1)→Z e^(Z*abs(Z)/mat A(4,2))→Z [ e^ : 2nd,e ^{x} ]min(Z,1)→Z (mat B(1,3)+.7mat B(1,4))/K→J 10+90*(.56J+.44Z)*J→Z int((Z+.5)/5)*5→Z Print Z Wait Goto A0 Label C0 ClrT Print "VALID DIGITS: 1-9 Print " Print "INVALID ATTEMPTS Print "(EXAMPLES): Print "3303, 0003, 3 Print " Print ">> Wait :ClrT Print "RESPONSE: Print "1 ATTEMPT NUMBER Print "2 YOUR TRY Print " NUMBER OF RIGHT [ 2 spaces in front of "NUMBER" ] Print " DIGITS AT [ 2 spaces in front of "DIGITS" ] Print "3 RIGHT POSITION Print "4 WRONG POSITION Print ">> Wait :ClrT Print "CHANGE NUMBER OF Print "POSITIONS: 3-8 Print "STOP:0 RESUME: [ 7 spaces in front of "RESUME:" ] Print K Print "INFO: WWW.TENHORN.COM Print " K→Z:Input Z ClrT If Z=0 Goto C1 If (Z=K) and (mat B(1,1)>0) Goto C2 [ > MATH > LOGIC > and ] Z→K Goto A0 Label C1 {1,1}→dim(mat C) mat C→mat A mat C→mat B Print "PRESS CL End Label C2 Print mat C Goto A2
If you need help with programming your calculator, this exercise will put you on the way: Creating a Program for the Sharp EL calculator |

Hein ten Horn

Top | Programs Sharp EL | Home