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Chapter 1

Introduction

Draw a few curves, assign color gradients to either side and the surrounding space is
automatically filled in smoothly and continuously (see figure . That is the artistic
promise of diffusion curves [I8], an exciting new vector primitive designed to allow creation
of complex gradients in a workflow that focusses on the contours in an image [17]. In
contrast, gradient meshes, currently the most advanced type of gradient available to artists,
require a careful subdivision of the filled region into a mesh, with colors assigned to all
nodes in the mesh. With diffusion curves no mesh is needed, just the discontinuities that
should be present in the image.

1.1 Image representation

Diffusion curves also offer a nice representation of existing images, as many real-world
images consist of (large) smooth regions with discontinuous boundaries. In fact, Elder
[6] addressed the question of completeness of edges as an image representation.
found edges (in combination with a scale related parameter) to indeed contain virtually all
(perceptually relevant) information in an image. This makes edges an interesting general
purpose image representation, and thereby diffusion curves as well, as they are in essence
a vector version of the edge based representation created by

In Orzan et al. [18] and [I7] a diffusion curves based representation is derived automat-
ically, allowing further manipulation and providing an effective alternative to systems like
ArDeCo [13], which automatically converts an image to a vector representation using more
traditional kinds of gradients. Given the discussion in Elder [6] it may also be interesting
to use automatic extraction of diffusion curves as a sparse representation for purposes of
compression or in compressed sensing [31]. For example, in [I§] a 946 x 633 = 598 818 pixel

(a) (b) (c)

Figure 1.1: Diffusion curves can be defined using Bézier curves (a) and color values on either
side (b). The result (c) is a smoothly shaded image that would be difficult to create using other
methods. (Example inspired by Orzan et al. [18].)
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(b) Traced result

Figure 1.2: Result of automatic diffusion curve extraction from Orzan et al. [I8]. The original
image (a) has 946 x 633 = 598 818 pixels, the traced image (b) uses only 16816 data points.
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image (figure is well represented using a mere 16 816 geometric, color and blur control
points. Although it is not known yet whether this would translate to good compression
(as that would also require looking at quantization methods and such) it does suggest the
ability to sparsely represent an image.

1.2 Implementations

Existing implementations for rendering diffusion curves have relied on discretizing the
Laplace equation Au = V-Vu = 0 on a regular grid (see figure . This leads to a
simple, extremely sparse, system of linear equations. In Orzan [I7], Orzan et al. [I8],
Elder [6] and Bezerra et al. [I] a multigrid solver is used to ensure fast convergence, but it
requires careful handling of boundary conditions and, as noted in Jeschke et al. [10} fig. 2],
can suffer from certain artifacts, especially in the presence of small image features. These
problems are somewhat alleviated by the improved boundary handling and initialization
in Jeschke et al. [10] (by means of a distance transform).

The algorithm developed by is similar in spirit to the multigrid solver
used by others, except that instead of creating multiple grids at different scales it locally
adapts the size of the Laplace kernel. This makes for an easier implementation and was
found to be faster and more precise than the solver used in Orzan et al. [18], although
both solvers reach interactive speeds for moderate image sizes (512x512, on a GPU). With
easier boundary handling, less artifacts and better performance this solution seems perfect
(and in practice it is quite nice), except that all solvers mentioned so far use a fixed number
of iterations and in doing so do not even reach 8 bit precision. If instead they iterate until
a certain error (or rather residual) threshold is reached they are suddenly not that fast
anymore. This is shown to be linked to a fundamental problem with trying to control
error in the image through minimizing the residual of the Laplacian.
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Figure 1.4: Diffusion curves give Dirichlet boundary conditions along éD, in the domain D the
Laplace equation is satisfied and we choose to follow the convention to enforce a zero normal derivate
boundary condition along the image boundary (a Neumann boundary condition). Conceptually
the curves are seen as the boundary of a stroked curve (with round caps) in the limit as the stroke
width goes to zero, as illustrated on the right.

1.3 Goal

In this thesis I will develop a new method for rendering diffusion curves based on analytic
boundary elements. This is motivated by the desire for a more precise solution, even
for images with complicated boundaries and widely varying scales. Part of the newly
developed solver can also be used in combination with existing grid based solvers to make
coping with boundaries easier. Such developments are expected to increase the viability
of diffusion curves as a commonly accepted drawing primitive and pave the way for new
quality-critical applications.

1.4 Defining diffusion curves

Diffusion curves are curves from which color is diffused to the surrounding area. The
resulting image v is the solution to the Laplace equation in the image domain D with
colors defined along the diffusion curve(s) as boundary conditions:

Au(x)

li d
C}ﬁ)lu(:z-i- n(x))
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gi(z) (x€6D)

(1.1)

g-(x), (z€dD)

where n(z) is the normal of the boundary curve at z and g4 the color on either side of
the curve (see figure . Without giving another boundary condition for what happens
away from the diffusion curves the problem above is under-constrained. In the original
definition, the derivative in the direction of the normal is made zero at the edges of
the rendered bitmap. Such a boundary condition is called a (zero) Neumann boundary
condition. Note that each color channel is handled separately.

Note that having a different color on either side of the curve gives rist to a discontinuity
at the ends of the curve. To give meaning to this, a curve is imagined to be the limit of



a stroked curve (with a round cap) as the stroke width goes to zero (see the box on the
right in figure . So the color depends on the angle from which you “look” at it.

As colors can be defined on either side of each diffusion curve, they effectively represent
discontinuities in the image. In the original definition a spatially varying blur is applied in
a post-processing step to allow for soft discontinuities. Other extensions include solving a
Poisson equation instead of the homogeneous Laplace equation. These are not covered in
this thesis.

1.5 Previous work

As early as the 18" century scientists were interested in surfaces of minimal area and this
continued throughout the 19" and 20" century. Even today research is still being done
in this area. In Courant [4] and in particular Trong Thi and Fomenko [30] an overview
is given of the early history of this field and it is shown how minimizing surface area is
related to solving the Laplace equation. Essentially this relies on the fact that solving the
Laplace equation is mathematically equivalent to minimizing the integral of the squared
gradient magnitude over the problem domain, and that the latter is a good estimate for
the surface area.

Much more recently, minimization of curvature was used to define “Spiro” splines [14]
(the name refers to the Euler spiral used in their definition). In a sense Spiro splines are
a one-dimensional higher order analog of surfaces of minimal area (which have zero mean
curvature as a result of minimizing area). These curves have been integrated successfully
in a number of drawing tools (e.g. Inkscape and FontForge). In section 11.5 of the original
thesis [14] it was suggested that it might be interesting to look for analogues in 2D, in
some sense diffusion curves are this analog]|

In Floater [8] Mean Value Coordinates were introduced as a generalization of barycen-
tric coordinates. Barycentric coordinates can be used to interpolate values between points
in a polygon and as such can be used to serve a purpose similar to diffusion curves. They
are motivated by the mean value theorem for harmonic functions (functions that satisfy
the Laplace equation) and were used for image cloning in Farbman et al. [7], comparing
the result directly to a result obtained by solving the Laplace equation. Interestingly,
mean value coordinates can be computed much faster than a similar result based on the
Laplace equation.

General solvers for the Poisson and/or Laplace equations have been studied extensively.
Roughly these methods can be divided in methods that, by definition, satisfy the equations
at the boundary and try to “fill in” the surface, and those methods that, again by definition,
satisfy the equations everywhere but on the boundary (or outside the solution domain)
and try to approximate the boundary (see figure . The first category will be called
“surface methods” and the other “boundary methods”. Limiting ourselves to methods that
support curved boundaries as used in Diffusion Curves we can identify the following surface
methods (note that I have tried to give a representative list but many more methods may
still exist):

e Common (mostly iterative) solvers on a matrix-vector equation resulting from dis-
cretization on a regular grid. For exampe Gauss-Seidel iteration or the conjugate
gradient method, often as part of a multigrid method [22] 23].

1So-called “biharmonic” functions would be an even closer 2D analog of Spiro splines, as they can take
both a value and normal derivative constraint at the boundary. Biharmonic functions generalize the images
generated using diffusion curves (which can be considered “harmonic” functions).



(a) Surface method (b) Boundary method

Figure 1.5: Surface methods (a) use a grid (or mesh) to cover the solution domain. In contrast,
boundary methods (b) discretize the boundary, ignoring the interior of the solution domain.

e Geometric multigrid [I8, 22, 23]. This speeds up convergence by discretizing the
problem on multiple grids, each on a different scale. The smaller grids allow values
to diffuse through the image quickly, while the larger grids provide the necessary
precision in modelling the boundary.

o Algebraic multigrid [27]. Similar in spirit to the geometric multigrid method this
also uses multiple scales, but instead of simply scaling a grid it groups values based
on properties of the linear system that is being solved.

e Four-point method [20]. This uses a Gauss-Seidel iteration, but processes blocks of
four pixels at once. A variation is also described which does this on a grid that is
scaled down by a factor of two in both the horizontal and vertical direction.

e Wavelet based [29]. This tries to solve the Laplace equation by transforming it to
wavelet space. This helps because there is a very effective diagonal preconditioner
for the wavelet-transformed Laplace operator.

e Variable stencil size [10]. Quite similar to multigrid methods, except that it is not
the grids that vary in scale, but rather the discrete Laplace kernel.

e Finite Element Method (FEM) [I7]. Instead of explicitly working with a discrete
representation of the problem on a regular grid, the FEM uses a continuous repre-
sentation based on a triangle mesh.

Among boundary methods we have:

e Boundary Element Method (BEM) [19, 33, [34]. Although exact methods differ a bit
these all try to build a solution by placing the so-called fundamental solution along
the boundary and solving a linear system to determine the correct weights.

e Method of Fundamental Solutions (MFS) [I5, 16]. As the fundamental solution
is singular at the origin special care must be taken in doing computations on the
boundary in BEMs. The MFS tries to avoid this by placing the fundamental solution
some distance away from the boundary.

e Boundary Knot Method (BKM) [3]. This method also tries to avoid having to deal
with singularities, but instead of moving the fundamental solution it uses different
basis functions (that actually solve a slightly different problem).
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(a) Scheme from Orzan et al. [I§] (b) Scheme from Jeschke et al. [10]

Figure 1.6: The original scheme (a) put the color constraints slightly away from the boundary,
using a gradient constraint on the boundary to maintain sharp transitions. The improved scheme
(b) first does a distance transform, which is used to vary the stencil size, as well as to initialize
each pixel with the color of the closest boundary point.

e Analytic Element Method (AEM) [9, 12] 26]. Essentially the same as the bound-
ary element method, except that emphasis is put on analytically integrating the
fundamental solution along the boundary.

Note that all current algorithms for rendering diffusion curves are based on surface meth-
ods, while I propose to use a boundary method, specifically the analytic element method.
Just like most boundary methods it is in principle resolution independent and the max-
imum error in the image is found on the boundary and is minimized directly (assuming
Dirichlet boundary conditions), as opposed to minimizing the residual of the Laplacian.

Diffusion curves were first introduced by Orzan et al. [I8] and described more exten-
sively in [I7]. Curves were defined to carry both color and blur constraints, with the
color constraints on either side of the curve. Both color and blur values were diffused (see
figure and then the color image was reblurred. The solver was a multigrid solver
and boundary conditions were put a few pixels away from the actual curves. Among other
things this required that gradient information was diffused as well. Diffusion curves were
used not only for interactive drawing purposes, but also for automatic vectorization of
existing images.

Jeschke et al. [I0] introduced two improvements. First of all, instead of putting the
boundary colors a few pixels away from the boundary and using gradient information
each pixel got the color of the correct side(!) of the closest boundary pixel as part of a
distance transform. By making sure that the pixels at the boundary never change, and
using an initialization based on a distance transform, the need for having a complicated
positioning of boundary colors and diffusing gradient information was eliminated, leading
to the scheme shown in figure [1.6b

The second improvement in Jeschke et al. [I0] was a simpler (but faster) iteration. In-
stead of employing multiple grids at different scales the size of the Laplace kernel was made
to adapt locally to the distance to the nearest boundaries (hence the distance transform
mentioned before). Apparently the type of distance transform used is not particularly
important, although informal tests did indicate a small advantage in using the conser-
vative Loo—nornfl This scheme has performance properties similar to a multigrid solver
(as shown later) but is less complicated to implement and has less problems in switching

2Tt is not entirely unexpected that the Lo.-norm performs slightly better, as it forces the kernel radius
to be smaller near a corner compared to other (pseudo-)norms and this is precisely where the solution is
usually the least smooth (making the four-point kernel less of a suitable approximation to the ideal circle).



between scales (a multigrid solver must use a carefully chosen upsampling operator).

Finally, Takayama et al. [28] extend diffusion curves to 3D and Bezerra et al. [11 [2]
introduce a number of extensions to 2D diffusion curves, in particular the ability to control
the diffusion in a number of ways. Instead of always having a color boundary condition on
a curve [Bezerra et al]also allow a gradient boundary condition for example. And instead of
solving the homogenous Laplace equation they allow solving the Poisson equation, which
allows for things like swirls. Also, instead of having color diffuse from all points on every
curve with equal “force” they allow a weight to be assigned to each point by a mechanism
analogous to homogeneous coordinates (which they call homogeneous colors).



Chapter 2

Existing algorithms

In this section it is assumed that both sides of any diffusion curve have the same color,
section [4.4] shows how discontinuities can be handled for any solver.

2.1 Gauss-Seidel

Gauss-Seidel (or Jacobi) iteration is probably the easiest way by far to solve a discretized
version of the Laplace equation with boundary conditions. Using a straightforward square
grid it simply requires setting each pixel to the average of its surrounding pixels, except
if the pixel belongs to the boundary, then it is left alone or the equation is modified to
incorporate a zero normal derivative boundary condition. Given enough iterations this
will converge. The main problem with this method is that it needs a lot of iterations
(millions for even a modestly sized image).

2.2 Block-based Gauss-Seidel

One way to reduce the number of iterations is to take blocks of pixels as the basic unit.
Instead of “solving” for one pixel at a time an entire block (generally a row or column) of
pixels is solved for in the sense that locally that block of pixels will satisfy the linear system
of equations. This becomes fast because there are fast methods to solve the subsystem
corresponding to a sequence of non-boundary pixels. Yan and Chung [32] describe such a
method based on solving a recurrence equation. They consider several cases, depending
on how boundaries are handled.

Here I will show one method of deriving a solver for a sequence of pixels between
boundaries. First note that in the interior of such a sequence (hereafter simply called a
sequence) the relation

uli — 1) — Buli] + uli + 1] = —(us[i] + u_[i]) = bli]

is satisfied. Here uy and u_ are taken to be equal to u if they fall outside the domain and
B = 4. Equivalently u4 and u_ can be considered zero outside the domain if we subtract
one from 3 for each neighbour outside the domair[]

'If both neighbours lie outside the domain the two zeroes of their characteristic equation become equal,
and some of the recurrence relations later on would have different solutions. This case is trivial to solve
though (by linear interpolation between boundary pixels) and is therefore not discussed further.



The extremal pixels of a sequence satisfy (without loss of generality we consider only
the first pixel, at position 1)

u[2] = Bull] = —(u[0] + uy [1] + u_[1]) = b[1] (2.1)

if u[0] belongs to a Dirichlet boundary, yielding the first case shown in Yan and Chung
[32]. If u[0] is outside the domain the condition u[0] = w[1] is imposed and the extremal
pixel satisfies
ul2) = (8 = ult] = —(us [1] +u_[1]) = b{1]. (2:2)

This case is not shown by [Yan and Chung, so we will derive it here. Also, it turns out
that their correction can be improved by a more rigorous analysis.

First, lets introduce the basic premise of [Yan and Chung/s method. The recurrence
relation shown above can be written as the linear system Bu = b, with

-p1 1
1 -6 1
1' —B 1
1 7ﬁn

If we define Ay in such a way that Ay +A_ = B and A\, A\_ = 1 this gives Ay = 271(8 £
/B2 — 4) Now we can find lower and upper triangular matrices

1 -y 1
—A_ 1 A 1
L= and U = )
—A_ 1 -y 1
-A_ 1 -y
such that
Ay 1
1 -6 1
1 -5 1
1 -5

This gives rise to a perturbed system B’u’ = b, which can be solved easily using the LU
decomposition of B’ given above.
After the perturbed system is solved we have

u'[2] — Apu/[1] = B[1]
u'li — 1] — Bu'[i] +o'[i + 1] = bld]
u'[n — 1] = Bu'[n] = b[n]

where A\ = 271(8++/% — 4). In contrast, the recurrence relation that should be satisfied
for u is (also see figure [2.1)):

uf2] - Brul] = b[1]
uli — 1] — puli] + uli + 1] = b[f]
u[n — 1] — Bru[n] = b[n|.

2Compared to Yan and Chung [32] A = —a and A_ = b, giving a slightly more intuitive notation.



Figure 2.1: Two possible sequences, showing all possible 5 values. Note that the case where the
image consists of a single row/column is ignored, as this is of little practical interest and trivial
to solve (it results in linear interpolation between boundary pixels), while it would complicate the
analysis somewhat.

So, to determine the correction vector p = u— u’ we only need to solve the (homogeneous)
recurrence relation

p[2] — Bip[l] = (B1 — Ap)u'[1]
pli — 1] = Bpli] +pli+1] =0
pln — 1] = Bup[n] = (B, — B)u'[n].

This can be solved using the solutions Ay = 271(84+/2 — 4) to the characteristic equation
A2 — BA+ 1 = 0 as the bases for power functions. For increased numerical stability we
can avoid large exponents of A (whose magnitude is larger than one) by using AL A_ = 1.
When doing that we can express p as

pli] = AN L BAT
Now A and B can be found by solving the following the equations:

AN (A = Br) + BA-(A= = A1) = (B1 — Ap)u/[1]
AN_(AZ = By) + BA" (\+ — Bn) = (B, — B)u[n).

Finally, the solution u can be found simply as u = u’ + p.

2.3 Multigrid

In Orzan et al. [I18] a simple multigrid solver is used which basically just starts with a
very scaled down version of the problem, solves that, scales up the result and uses that
as initialization for the next level. This is continued until the image is solved at the scale
required. This probably is the simplest kind of multigrid solver, but works quite well, as
it drastically reduces the time needed for colors to “reach the other side”. For efficiency,
it iterates a fixed number of times (3 in my implementation) at each iteration.

2.4 Variable stencil size

In Jeschke et al. [I0] a solver is used which locally enlarges the size of the discrete Laplace
kernel instead of scaling the solution grid like in a multigrid method (see figure .
Initially the kernel is always as large as possible, in subsequent iterations the kernel is
shrunk until it has reached its normal (not enlarged) size everywhere. The justification for
this method is based on the smoothness of the solution, as this makes it possible to enlarge
the kernel without the need for prefiltering the solution (although it could be interesting

10



Figure 2.2: Using the variable stencil size method the size of the kernel is adjusted locally based on
the distance to the boundary (I3 or Euclidean distance is shown, but easier to compute alternatives
can also be used). In combination with a proper shrinking strategy this schemes ideally doubles
the precision of the solution at each iteration, as shown in 1D in the sequences of images on the
right.

to explore if prefiltering would help). From a practical point of view this approach is much
easier to implement than a normal multigrid method, and it appears to give better results
as well, a win-win situation.

Based on Jeschke et al. [I0] I have written a solver that employs a variable stencil size
as well. However, in my implementation the radii 7 are shrunk by using max(r, 2"~%), with
n = [logy(max. distance)]| being the number of iterations and 7 € [1,n]. This gave slightly
better results in my tests and makes it possible to compare the solver more directly with
the multigrid solver.

11



Chapter 3

Errors and residuals

When looking at the approximate solution @ found by an algorithm there are two objects
that can be used to say something about the objective quality of the result. These are the
error e = 4 —u (with u the reference solution) and the residual in solving whatever system
of equations the algorithm was trying to solve. This chapter looks at the link between
these two for both surface methods and boundary methods. I will show how boundary
methods have a natural advantage over surface methods for solving the diffusion curve
problem stated in equation . Specifically, for boundary methods it is shown that
mostly the residual gives the error at the boundary, and that the maximum error occurs
on the boundary. In contrast, for surface methods it is shown that the factor between the
error and the residual can grow quadratically in the size of the domain (this is made more
precise below).

3.1 Surface methods

All of the above grid based surface methods suffer from an issue that is both interesting
and detrimental to their usefulness. As with any numerical method an exact solution will
never be obtained. So instead of the Laplace equation the approximate solution 4 will
satisfy the non-homogeneous Poisson equatio

Au(z) = f(x), (z € D)

where f(z) is the residual in solving the Laplace equation. Since the true solution u satifies
the homogeneous Laplace equation

Ae(x) = Au(x) —u(z)) = f(x). (r € D) (3.1)

In practice there are often areas where the residual has the same sign. Assume for the
moment that such an area is circular, that the error on the boundary of the area is zero
and that the residual is everywhere equal to €. This will yield a radially symmetric error
function that satisfies (using polar coordinates around the center of the area)

0? 10 N 1 0%
= — ——e+ —5-5¢€
pop < p2op?

—€.
pOp

'For simplicity the continuous PDE is used instead of the discrete difference equation, it is expected
that similar results will hold for the discrete case.

12



(a) Rectangular domain (b) Reference output

Figure 3.1: The rectangular domain with one Dirichlet boundary and three Neumann bound-
aries and the reference output. Along the top of the image the boundary condition g(xzg) =
2 [1+sin(2m(1 + 5Z2) 2],

Solving this equation (allowing only smooth solutions) with e(+R) = 0 yields

(p* = R?)e.

ee(p) = 4

Evidently e. reaches its maximum absolute value % at the center of the disc (p = 0).
This shows that the maximum absolute error satisfies a quadratic dependency on the radius
of the area, as well as growing quadratically from the boundary. This follows naturally
from constraining the second derivative to some non-zero constant value and making the
value zero at the boundaries.

Now suppose that the residual varies over the region but is still bounded from zero
by a (without loss of generality) positive € (that is 0 < € < f(z,y)). Then e — e, the
difference between the error functions, satisfies Ae = f —e. Since f — € has the same sign
as f and € (or it is zero) the difference function also has the same sign (or is zero) as e,
and max |e| > max |e.|, only making things worse.

In general the components of f are amplified in e by a factor that is quadratic in
their “period” T' = 1/||¢||, with £ representing frequency coordinates. This can be seen by
Fourier transforming equation :

F{Ae(x)} = F{f(x)}
[(27i€o)? + (27i€1)?] E(€) = F(€)
—4Ar?|[€|*E(€) = F(€)

(
BE) = ~ ey )
B(€) = ~ 15 F(©)

Note that this does not uniquely identify the solution e(x), as no boundary conditions are
given. If boundary conditions are given a harmonic function can be added to make the
solution satisfy them.

To see this effect in practice, consider the rectangular domain shown in figure If
the residual f(x) is equal to the constant e over the entire domain, then it is clear that
the error is

e(x) = %xl(xl — 2h)e. (3.2)

13



(a) Gauss-Seidel

(b) Block-based GS

(c) Multigrid

(d) Variable Stencil Size

9.1073 ‘ 4-107! ‘ ‘ 1.2-107! ; ;
7 3.107* - L 91072 F P
-3 L 4 = -
S 6-10 S/ 22.107! ; S 6102 p 2
— 3 V. 1 |/ [} ol
03.107° [ 4« B 10~ , 3-10
! | 0 - - 0 L L
0 w w 00180 360 0 180 360 0 180 360
0 180 360 distance distance distance

distance

Figure 3.2: Plots of maximum absolute error against distance to the closest boundary. The solid
blue line shows the measured value, the dashed green line shows equation , with e chosen so
that the error at the largest distance agrees. The test image described in figure is used. To
give an indication of the ratio between the maximum error and the residual, the RMS residuals
were approximately 5.3 - 1078, 2.4- 1074, 1.1-10~* and 2.3 - 10~°, respectively.

This error’s absolute value reaches its maximum %h2]e| at 1 = h. As can be seen in
figure [3.2] the measured error is almost always roughly equal to or larger than an estimate
based on fitting equation , demonstrating that a small residual does not necessarily
give a small error everywhere in the image. The main exception is the graph for the variable
stencil size method. This one exception is likely due to a problem with the algorithm (or
its specific implementation) though, as its error does not appear to satisfy the Neumann
boundary condition (which it should do by definition), and because the graph does behave
as expected when the algorithm is modified to iterate to a certain residual threshold before
shrinking.

Note that all of the methods shown in figure exhibit errors that are much larger
than the smallest representable value for 8 bit images (3.9 - 1073), except for the Gauss-
Seidel method, which is way too slow. I have tried improving the results of the multigrid
and variable stencil size methods by letting them iterate at each scale until the root-mean-
square value of the residual was below some low value (10~7). This resulted in a maximum
absolute error that would just be acceptable for 8 bit images, but solving a 512 x 512 image
took roughly 500 times as long, making this not very interesting in practice.

3.2 Boundary methods

In the face of Dirichlet boundaries it is obvious that boundary methods perform quite well,
as the error will necessarily be a harmonic function (i.e., it satisfies the Laplace equation)
in D, and thus obtains its maximum value on the boundary. As it is the error on the
boundary that is minimized in a boundary method this leads to a very direct relation
between the maximum value of the residual in the solution of the boundary problem and
the maximum error in the image: they are essentially equal.

In the face of Neumann boundaries, however, it is not so obvious how boundary meth-
ods perform. A useful tool to illustrate this is the 27-periodic strip domain (figure ,
with a Dirichlet boundary on one side and a Neumann boundary on the other side. This ge-
ometry is particularly relevant to many real-world scenarios because the 27-periodic strip
domain can be mapped to any doubly-connected (annulus-like) domain while preserving
a solution to the Laplace equation, using the theory of conformal mappinﬂ In particular
this enables application of the analysis here to the case where all diffusion curves lie within
the bounds of the image and a zero normal derivative is enforced across the image edges,

2Courant [, §1.7] discusses how to construct conformal maps between doubly-connected domains.

14
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Figure 3.3: The 2m-periodic domain with one Dirichlet boundary and one Neumann bound-
ary, and the corresponding annulus-shaped domain constructed with the conformal map z’' =
eV~ cos(z),y’ = eV~ %sin(z).

by looking at the space between the image edges and any hull (not necessarily convex)
around the diffusion curves.

The value of a resulting from a conformal map from a doubly-connected domain to
the strip domain depends on how “thin” the original domain is, which can be made precise
using the concept of extremal length [4, §A.3.6]. For example, the extremal length between
the boundaries is £4 = (27) log(r2/r1) for an annulusﬂ and fg = (27)"'a for the 27-
periodic strip domain. As extremal length is invariant under a conformal map these values
can be equated to find the value of a such that the 27-periodic strip domain is conformally
homeomorphic to an annulus with radii ry, rs.

The Laplace equation can be conveniently solved on the 2mw-periodic strip domain by
using the separation of variables method for solving PDEs [21], ch.5 and §7.7], which works
by trying to represent u(z) as the product of ug(z¢) and uy(x1). If u = ugp-u; is substituted
in Au(z) = 0 we obtain

Au(x) =0
A(ug(xo)ui(zry)) =0
ug(xo)ui (1) + uo(2o)ui (1) = 0
up(zo)u(w1) = —uo(xo)uy(21)
ug(zo) _  uy(z)
uo (7o) uy (1)

The last step gives the method its name. Now, since xg and x; are independent there has
to be a constant A such that

ug(zo) _  uilz1) _ |
UO(.CC()) Ul (:Iil)
This leads to
ug — Aug =0 (3.3)
uf + Aug = 0. (3.4)

Now suppose that we represent uy(xg) by the Fourier series

up(zo) = Z Up[n]e™o.

n=—oo

3T use the square of the definition used in Courant [4], for convenience.
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Equation (3.3 then becomes

Z [—n2Uo[n] — AUp[n]] emro — (),

n=—oo

Clearly, it is in general impossible to select a single A that makes this true. However, if A
is made to depend on n we have

n?Uy[n] + A\[n]Up[n] =0

Substituting this in equation (3.4)) for a frequency dependent Uj[n](z1) we get

Uin]"(x1) — n2Uy[n)(z1) = 0
Ui[n](z1) = A[nle™™* + B[n]e "*1.

Finally leading to the general solution

u(z) =Y Up[n)Ui[n](z1)e™™

n=—oo
[e.o]

= Z Uo[n] (A[n]e™™* 4+ Bln]e ") eino, (3.5)

n=—oo

To enforce a non-zero Dirichlet boundary condition at z1 = 0 and a zero Neumann bound-
ary condition at x1 = a, u(xo,0) = g(xo) and (9/0x1)u(xo,a) = 0, we have

Ui[n](0) =1 = A[n] + B|n|
Ui[n])'(a) = 0 = nA[n]e™ — nB[n]e™ ™"
Aln] =1 — B|n]
0 =n(1l — B[n])e"™® — nB[n]e "¢
0=e"" — B[n](e™ + e ")
Bln] = " /(" 4+ ¢7)
Aln] =e /(e + e ).

Similarly a solution with a zero Dirichlet b.c. and a non-zero Neumann boundary condi-
tion, u(xp,0) = 0 and (9/0z1)u(xg,a) = h(xp), can be found by setting

1 = n(—BJn])e"* — nB[n|e ™
1 = —B[n|n(e"* + e ™)
=—1/[n(e™ + e )]
=1/ [n(e™ +e ™).

=

Putting the above all together a solution to the Laplace equation with u(zg,0) = g(zo)
and (0/0x1)u(zg,1) = h(zp) can be found. Denote the coefficients of the Fourier series
for ¢ and h by G[n| and H|n|, respectively. Insert these in equation (3.5) using the
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corresponding definitions for A[n| and B[n| derived above, and add the two solutions that
arise, we then have

e}

u(x) = Z [G[n] (en(:mfa) + e”(a*fﬂl)) + Hin] (6"901 B e*nzl) /n} enﬁ:g:ﬂﬂ
- Z [G[n] cosh(n(zy — a)) + H|[n]sinh(nz1)/n] sech(na) - ™. (3.6)

This equation makes it possible to analyze the propagation of error through the domain by
realizing that the error function e is of exactly the same form, ideally with ¢ = h = 0, but
with non-zero g and h in practice. Also, it is important to note that, as this is a harmonic
function, the extrema are always at either 1 = 0 or 1 = a. As can be seen from the first
part of equation the part of the error involving G is reasonably benign, at x1 = a its
frequency components are scaled by

cosh(n(a — a)) sech(na) = 2/(e™* + e~ "),

which is clearly positive and < 1, and in fact exponentially decreasing in |n|. In contrast,
for the second part, involving H, the components are scaled by

sinh(na) sech(na)/n = tanh(na)/n.

For |n| > 1 the maximum absolute value over all a is 1/|n| < 1, which is fine. Unfortunately
things get a little hairier for n = 0, for which we have, by I’'Hopital’s rule,

lim tanh(na)/n = lim asech(na)? = a.

n—0 n—0
This shows that the error caused by the residual on the Neumann boundary can grow (at
most) linearly in a. It is important to note that (non-zero) Neumann boundary conditions
are not necessarily preserved by a conformal map, so one might question the relevancy of
this result when looking at real world situations. Clearly the most important component
of H that is important in this respect is H[0], so below I will show that this component
does remain unchanged after applying a conformal map.

It is useful to state a few properties of conformal maps now. Given the conformal map

F = [U,V] from a general doubly-connected domain D* to the 27-periodic strip domain
we have (with §D}, the Neumann boundary):

P1. U(z) maps dD}, bijectively to [0, 2m).
P2. x € 0D}y = V(z) = a.
P3. The Cauchy-Riemann equations (0/0z)U = (9/0x1)V and (0/0x1)U = —(0/0xo)V.

Notice that the Cauchy-Riemann equations imply that the Jacobian of F is a scalar times a
rotation matrix, and in particular VU L VV and ||VU|| = ||[VV||. Using these properties,
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and denoting the solution in the general doubly-connected domain by u*,

u*(s) = u(F(s))

CL) = e (s) (o)
= Ju(F(s)) Jr(s)n(s) (chain rule)
SLCAY O gy (s)n(s)
= 2 v(s)n(s) + oz, v s)n(s
_ g;(p(s))uvws)u (P3,5 € 0D = VV | )
= 2L (U(s), @)V (P2, P3)
X1

= h(U(s)[VU(s)]-

Which can be used to show that

(0] = /5@ %‘Z (s) ds

_ / (U (s))[IVU (s)|| ds
DN

2
:/0 h(xo) dag (PL,|VU(s)|| ds = dao)
_ H[o].

This establishes that the maximum factor between the residual on the Neumann boundary
and the resulting error in the image is linear in ¢ (note that since we used a conformal
map / = {g = (2m) " 'a).

In summary, whereas with surface methods the error can have a quadratic dependency
on the diameter of a regiorﬁ, with boundary methods the maximum error is either inde-
pendent of the size of the domain or depends linearly on the extremal length ¢ between
the boundaries (and only for the constant component of the residual on the Neumann
boundary).

4A quadratic dependency on the diameter for the error was shown for surface methods in a circular
domain with Dirichlet boundaries and in the rectangular domain with one Dirichlet boundary and three
Neumann boundaries, but something similar can be shown for the 27-periodic strip domain with one
Neumann boundary.
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Chapter 4

Analytic Element Method

In contrast to all of the methods above, the AEM does not consider the interior of the
domain, it only considers the boundary of the domain. This makes it easy to handle
domains of arbitrary size (even infinite) and can provide a distinct performance advantage
whenever it takes (much) less elements to discretize the boundary than it takes to discretize
the domain (which is often the case). In addition, as shown earlier, the AEM has the
potential to provide more control over errors in the image. Instead of having an error that
can grow quadratically with the size of the image, the largest error in the image is mostly
bounded by the largest residual in trying to match the boundary conditions. Whenever the
largest error is larger than the largest residual, this is due to the zero frequency component
of the error on the Neumann boundary and it will still be only linear in the extremal length
between the Dirichlet and Neumann boundaries.

4.1 One dimension

As an introduction to the concept behind the analytic element method we will first examine
the (trivial) one-dimensional case. Suppose we have a solution domain that consists of a
line segment, with a few points on this segment where we have a Dirichlet boundary
condition (on either side of the point) and zero Neumann boundary conditions on the
endpoints of the segment. It is clear that a solution to the one-dimensional equivalent of
the Laplace equation (u”(z) = 0) will be linear, so in our case the complete solution will
be piecewise-linear, with all discontinuities at boundary points.

To apply the AEM we first need to find suitable basis functions. A simple linear
function does not suffice, as any linear combination of linear functions will yield another
linear function, making it impossible to satisfy more than two constraints. Instead a
function ¢(z) is used which satisfies ¢”(z) = 5(:L‘ lz|. Obviously, to still satisfy
u”(x) = 0 between boundary points, this so-called fundamental solution can only be
centered on boundary points.

The fundamental solution %\m\ can be used to build up any continuous piecewise-linear
solution. This can be done using a sum of translated and scaled copies, with each copy
centered on a boundary point. To also allow for discontinuities at boundary points we
need a basis function whose first derivative is §(z) (see section for how to handle
discontinuities in the 2D case). This is clearly satisfied by the first derivative of the
fundamental solution, as (d/dz)(¢'(z)) = ¢"(z) = 6(x). As illustrated in figure this

'The Dirac Delta d(z) is defined as satisfying [, f(7)6(t — 7)dr = f(t) for any function f(z). One

construction is to take the limit of the Normal distribution efzz/(zc’Q)/\/ 2mo? as o goes to zero.
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Figure 4.1: A one-dimensional problem, showing the weighted basis functions (top) and the result
(bottom). Note that as no constraint is put on the values outside the domain there is some choice
in how to choose the weights for the two outer boundary points.

can be used to write any solution as

u(e) = Y wn(y)3le — vl + wp(y)§ sign(z — y). (1)
yedD

The analytic element method tries to solve equation (4.1) by trying to find wy(y) and
wp(y) such that the boundary conditions are met.

4.2 Two dimensions

As we have seen, the fundamental solution to Laplace’s equation is the basis of the AEM
and related methods. In two dimensions it is defined as ([21], ch. 8], assuming = € R?)

1
= —In|z|.
o) = 5=tz

It can be checked that Ap(z) = 0(x).
For analytical purposes it can be useful to use In(z) = In |z| + arg(z)i with z = xg + x1i
and rewrite the fundamental solution as

o(2) = Re [;ﬁ ln(z)] |

This leads to much simpler algebraic manipulations. In particular it makes it possible to
easily write down closed form expressions for integrals involving the fundamental solution,
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for example (taking the full, complex, solution and ignoring the constant factor (27)~1):

1 z+1
/ln(z—t)dt—/ In(C)dC ,C=2—t

—1 -1

= [¢In(¢) - ¢
=(z+1)h:z+1)-(z+1)—(z—1Dn(z—1)+ (2 —1)
=1+4+2z)ln(z+1)+(1—-2)ln(z—1) —2.

Just like in the one dimensional case the AEM for diffusion curves tries to find a
solution u that satisfies the diffusion curve problem by placing the fundamental
solution everywhere along the boundary. Here the boundary is one dimensional (a curve)
though, so the sum becomes an integral. In this scheme the solution is given by

Assume the boundary is parameterized by a function [ : [0, N] — R2, consisting of N
continuous segments traced out by 1;(t) = I(j + t) (with t € [0,1]), then

N
u(z) 2/0 w(l(r))p(z = L) VU dr
N

1
=3 [ wltmete ~ LIV i

j=1

When evaluated on the boundary this gives a continuous system of linear equations (using
a suggestive matrix notation)

u(l(t)) = (Mw);. (Mir = (1) = L) [[VI(T)])

The “columns” of M can be discretized by using polynomials p,, upto order M as basis
functions for w2k

M 1
- Z i / ~ ()9 () pn(r)

The “rows” of M can be discretized by one of two methods: the collocation method, or
the Galerkin methodﬂ This consists of taking either a finite number of samples of Mw
along each line segment (collocation) or the dot products between Mw and some finite

2In principle the “columns” of M can also be discretized using a finite number of Dirac deltas (pulses),
but this is not done in the analytic element method, one advantage being that no spurious singularities
are introduced.

3The Galerkin method can be seen as a generalization of the collocation method if you consider the
Dirac delta as possible test “function”.
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(a) AEM solution (b) Boundary segments

Figure 4.2: Just like in the grid-based methods a Neumann boundary condition was enforced at
the four sides of the image.

family of appropriate test functions (Galerkin). The Galerkin method can give rise to a
nice, symmetric, system of linear equations, given by the matrix

1 1
M(Gi,m),(j,n):/o /0 P (&) (VL@ o (li(t) = (7)) IV (7)[| pa(7) dr dL. (4.2)

Note that for clarity the row and column indices are given as pairs, so (i, m) specifies the
row, and (j,n) the column, of MY,
In its simplest form, the collocation method gives rise to the (non-symmetric) matrix

1
MG iy ) = HWi(tm)H/O p(li(tm) = 1;(7)) V1 () pa(T) dT. (4.3)

The factor ||Vi;(ty,)| gives more weight to samples representing a larger portion of the
boundar

In figure[4.2]T used the collocation method as given above. Each segment is straight and
the polynomials py(7) are the monomials transformed so that py(0) = (—1)* and pg(1) = 1.
The number of samples taken is greater than the number of unknowns (known as the
overspecification principle [9]) and the resulting system is solved in a least-squares sense.
For simplicity QR decomposition is used, although in practice methods like the nested
super-block method [5] would give better performance by using a hierarchical datastructure
to compute long-range interactions.

4.3 Integrating the fundamental solution

Both equations and contain (definite) integrals of the fundamental solution.
These integrals are not that easy to evaluate numerically, as the common methods for
doing so depend on being able to approximate the integrand using a polynomial, which
is not possible if the integrand can be singular in the integration interval. Here we will
work around this issue by performing the integration analytically, leading to a simple,
precise and efficient implementation. For simplicity only the integrals necessary for the
collocation method are investigated, those for the Galerkin method can likely be dealt
with in a similar fashion.

Please note that we will only consider linear segments, so ||VI;(7)|| is constant and we
can ignore it in most of the computations. Also, without loss of generality, we will only

“The factor ||Vi;(tm)| also follows from the definition for M if p, (t) = §(t — tm).
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consider the line segment that goes from (—1,0) to (1,0) as ¢t goes from —1 to 1 in this
section. This is in contrast to the previous section, where ¢ went from 0 to 1 for a single
line segment. This difference in notation does not truely matter for the argumentation,
but does make some equations more natural. It should also be noted that from now on
only the complex fundamental solution In(z) will be used, as this greatly simplifies the
results.

Below we will first look at deriving an explicit representation of the required integrals,
which will prove to be mostly useful for the near-field (although in practice it does quite
well in the far-field as well, at least for low order polynomials). Next a series representation
will be derived that can be useful for far-field computations. Finally, I will discuss two
approaches for handling arbitrary linear segments, and not just the segment that goes
from (—1,0) to (1,0). Appendix |A| has details on how to compute the derivatives of the
integrals derived here.

4.3.1 Near-field

Previously, we found

Dpy(z) = 1 In(z —t)dt
1

= ({+ 2)In(z+1)+ (1 —2)In(z —1) — 2.

In general we have

1
D, (2) = /1pn(t) In(z —t) dt.

As it is not difficult to integrate a polynomial we could try integration by parts:

/_11 pn(t)In(z —t)dt = [(/pn(t) dt> In(z — t)] 1_1 - /_11 (/pn(t) dt) ti .

This does not seem to get us anywhere though, as p,(t) is not divisible by ¢t — z and there
is no other obvious way to integrate the last term. But what if p,(t) had been divisible
by t — 27 Then we would no longer have anything other than a polynomial as integrand,
making integration trivial. Although p,(t) cannot be divisible by ¢ — z, the following
manipulations do lead to a formula that only requires integrating polynomials:

/pn(t) In(z —t)dt = (/pn(t) dt> In(z — 1) — / (/pn(t) dt) p i pl
_ (/pn(t) dt> In(z —t) — (/pn(z) dZ) In(z — 1)
_/</pn(t) dt) %dw (/pn(z) dz) In(z — )
~ ([t [ra:) s -0
- (frs) o (i) ] 520
~ ([0t~ [z )~
_/</pn(t) dt—/pn(z) dz> idt.
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That [ p,(t)dt — [ pn(z)dz is indeed divisible by (¢ — z) can be seen as follows:

/pn(t) dt—/pn(z) dz = /chn)ti dt—/z:cl(»n)zZ dz

- zi1§n) [t — 2]

—Z +1 A"t — 2)Qilt, 2),

with (note that the last step is only valid if i > 0)

il _ it
(t -
Qut, ) ="
= ZQZ‘_1<t, Z) + ¢ (4.4)

=+t 42
[ ]

For the monomials we can now find

1
M () = /lt" In(z —t)dt
1

= [(/t”dt — /z”dz) In(z —t)} :1
—/_11 </t”dt—/z”dz> idt
SRR

1
/ Lo U aa) L
1 \n+1 n+1 t—z

1 1
Sl [(1 = 2)Qn(1,2)In(z ~ 1) = (-1 = 2)@n(~1,2) In(z +1) - /_1 Qult, 2) dt}
1 1
- [(1 —2)Qn(1, ) (2 — 1) + (14 2)Qn(=1,2) In(z + 1) — /1 Qn(t, 2) dt] |

This can be evaluated using the recurrence relation

1

q)y(z):(lz)ln(zl)(1z)ln(z+1)/_11dt

=1-2)In(z-1)+1+2)In(z+1) -2
1

1
M () = 1 [(1 —2)Qn(l,2)In(z — 1)+ (1 4+ 2)Qn(—1,2)In(z + 1) — /_1 Qn(t, 2) dt}

1 n
- [0 2o + a1

1
2Qn_1(t, 2) + " dt]

)

(4 2)(2Quor (—1,2) + (—1)") In(z + 1) — /

1
1
n+1

[nszfy_l(z) +(1-—2)ln(z—1)+(-1)"Q+2)In(z+1) —
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Conveniently, this allows efficient evaluation of ®,, for a range of n, making these compu-
tations scale quite well when using high order elements.

Alternatively, all terms except the integral of (), can be computed explicitly and the
integral of @),, can be computed using the recurrence relation

/Qotzdt /1dt:2

/ Qn(t, 2) :/12Qn_1(t,z)+t”dt

1+ (—1)".

1
— w1t 2) dt
Z/_lQ 1( Z) * n+1

4.3.2 Far-field

The above can prove problematic when |z| > 1. Instead we can try again to apply the
product rule repeatedly to the original integral. Just looking at the antiderivative this

gives
/pn(t) In(z —t)dt = </pn(t) dt> In(z —t)

(i)

— ([t ne—1
SVECI =
- [ ([[mivae) 2

:< / pn(t)dt> In(z — 1)
-(Jfr0a) i
([ Jmo)
~[(f [r0a) &=

— ([ ratrae)nie—1
S e

Using the Cauchy formula for repeated integration (where fat f(t)dt should be read as

2)?
2

] f(t) dt];, effectively giving an antiderivative which is zero at a)
t t ' 1/t 4
/ / pu(t)dt ™t = ,'/ (t—s)'pn(s)ds
a a 2: a
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this becomes

/at pu(t)In(z — t) dt = </t Pu(s) d5> In(z — t)

oo

! (/at(t — 5)'pas) ds) 0 _12)1"

i=1

Now the definite integral

D, (2) = </alpn(s) ds> In(z —1) — (/alpn(s) ds) In(z +1)
S (-t e ([t
- (/alpn(s) ds> In(z — 1) + (/@1 pn(s) ds) In(z +1)

o

_Zi [(/:(1 — 5)ipa(s) ds) (1_12)¢ + (/al(l +5)'pa(s) ds> (1—iz)i:| .

=1

Different choices of a lead to different approximations. Good choices are a = 0 or both
a = —1 and a = 41 and averaging the result. The latter has the advantage that for
the Legendre polynomials the integral fil(l + 5)'p,(s) ds is zero for i < n. This integral
becomes zero for small ¢, because the n-th Legendre polynomial is orthogonal to all poly-
nomials of degree less than n. In particular this avoids needing to compute a log term for
n > 0.

When choosing a = 0 and working with polynomials for which p,(—t) = (=1)"p,(t)
(such as the monomials, Legendre polynomials or Chebyshev polynomials), then it is
convenient to make the substitutions s = 1—s and s = s —1 in the left and right integrals,
respectively, to get

By (2) = (/Ol_apn(l _s) ds> In(z—1) + </01+apn(s - 1)ds> In(z+1)
[ o) g ([ e 0) ]

= </01_apn(l —5) ds) In(z — 1) + (=1)" (/01+apn(1 —5) ds> In(z +1)
) 21 ([ st =ovs) g ([ s —90) (55

Specifically, for the monomials, we have

OM () = (/Olau _ g ds> In(z — 1) + (—1)" </0M(1 — g ds> In(z + 1)

([ ) e (s sras) G2

=Bl -a;l,n+1)In(z—1)+ (-1)"B(1 +a;1,n+1)In(z + 1)

=1 , 1 , (-1)"
— - |B(1 —a; 1 1 -+ B(1 ; 1 1 - |
- (1-a;i+1,n+ )(1—2)1—1— (1+a;i+1,n+ )(1+z)1]

i=1 -
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If we then indeed choose a = 0 this reduces to

M (2) =B(1,n+ 1) [In(z — 1) + (—=1)"In(z + 1)]

N (1 |
_;iB(z—i-l,n—&-l) _(1—z)i+(_1) ]
=B(l,n+1)[In(z —1) + (=1)"In(z + 1)]

1 . i n ! :
+Z;B<z+1,n+1> (=1) +1(1+z>i(1—2>"]'

Here B(a,b) =T'(a)'(b)/T'(a + b) is the beta function defined as f to=1(1 — t)*~'dt, and
B(x;a,b) is the incomplete beta function defined as [’ t%(1 — 8 Ldt. AS I'(i+1) =4l
for any integer ¢, B(i + 1,n+ 1) = (i/(n+ i+ 1))B(i,n + 1), thls can be used to quickly
compute the coefficients.

The series in equation is suitable for use with large z, and similar to series used
in Strack [25, e.g. ch. 3 and ch. 6], Le Grand [12] and Steward et al. [24]. To evaluate it
efficiently, it is useful to note that

1 1
Ziy1 = (_1)n+1 (1 +z)i+1 o (1— Z)i—i—l

— (_1)n+1 (1 B Z) _ (1 + Z)

(1-2)142)(1+2)¢F (1-=2)(14+2)(1-=2)
_ 1 . (_1\n+1 Z o z
R R (s T o s A (B s T s
B 1 et (z+1) (z—1)
DR T R A BT (s T s Al s e g v e
_ 1 el 1 1
DS T R A BT s Al w1 gy
= 7~ 7]

4.3.3 General linear segments

The previous subsections considered a linear segment starting at (—1,0) and ending at
(1,0). In practice this is of course rarely the case, so we need a mapping from a general
segment to this standard segment. The most straightforward way to do this is to sim-
ply scale, translate and rotate the coordinate system in such a way that the segment in
question becomes the standard segment. If the segment goes from p to ¢ (using complex
“coordinates”), then the transformed coordinate

g_ =P —la—2) _22-p—g
q—p q—p

This can then be used to compute ®,(z'). As this mapping is conformal, ®,(z") still
satisfies the Laplace equation away from the boundary.

Performing the above coordinate transformation is a valid method to compute a basis
function for the analytic element method, but it does not (in general) give the same
answer as integrating the fundamental solution along an arbitrary linear segment. A small
modification is needed if exact equivalence is necessary, as it is for using the technique
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Figure 4.3: Left: An angle dependent color at end-
points in a FEM reproduces the discontinuity along

the curve, but also introduces discontinuities between
— ” — E, adjacent triangles at the endpoint. Right: Assigning
all nodes at the endpoint the same (average) color (as

in Orzan [I7]) causes color bleeding.

described in section [4.4t

P (2) = iIq -1l /1 pn(t)In <Z - B(q —p)t+ ;(P-HI)]) dt
*\q p\/ pa(t ([ (¢ —p)? +;(p+q)] - B(q—p)tJr;(erq)D dt

*Iq pl/ pal(t < q-— p)(z'—t)> dt
7‘(1 Pl [/ n(t)In (2 —t) dt +In <;(q—p)> Kllpn(t)dt} ,

The factor in front of the integral accounts for the length of the segment and the factor
of (2m)~1 that should be in front of the fundamental solution, also compare to ||VI;(7)||

in equation (4.3)).

4.4 Adding discontinuities back in

Discontinuities in the resulting image are, frankly, the raison d’étre for diffusion curves.
They do come with some problems though. First of all, it is not completely clear how
to properly handle endpoints of curves. What equations should hold there? In figure
I gave one possibility for the continuous case which could be used with a FEM or any
other grid-based method, except that it would introduce discontinuities where they are
not supposed to be, as shown in figure Orzan [I7] suggests averaging the colors at
the endpoints, but as figure shows, this can lead to color bleeding.

Secondly, the fact that both sides of the curve can have a different color complicates
discretization of the boundary between the endpoints as well. So much so in fact that
Orzan et al. [I8] deemed it necessary to take special precautions to prevent both sides of
the boundary from interfering with each other. Also, the FEM-like method used in Orzan
[17, §3.3] needs to explicitly double the curve edges. The discretization shown in Jeschke
et al. [I0] alleviates these issues, but still requires some extra bookkeeping and a “heavy”,
two-pixel wide, boundary. It would be great if we could somehow make the solver work
without discontinuities, while still having jumps in color in the final image.

Luckily we can eliminate any discontinuities from the image beforehand, and this can
be done directly, without explicitly solving a system of equations, only requiring an ad-
justment of the boundary conditions. This is based on separating the solution « into a
continuous part v that uses the average color of both sides as boundary condition (with a
slight correction, read on) and a discontinuous part w that purely represents the “jumps”
across the boundaries (see figure [4.4). Any normal derivative (Neumann) boundary con-
ditions also need some adjustment. These solutions satisfy

Av(z) =0 (x € D)
o) = (01 (@) + g (@) ~ w(a) (« € 6D)



(a) Final solution u = v + w (b) Continuous solution v (c) Discontinuous solution w

Figure 4.4: The final solution w (a) is built up of a continuous solution v (b) and a discontinuous
solution w (c¢). In the latter, zero is represented by 50% full-scale gray (no other color transfor-
mations have been applied). Note that the discontinuous solution is trivial to compute and that
the continuous solution can be found using any of the mentioned algorithms to solve the Laplace
equation.

and
Aw(z) =0 (x € D)
i (o + dnfw) = w() + g+ () — g (2) (x € 4D)
li (o — dn@) = w(@) + g () — g4(2), (x € 9D)
leading to
u(z) = v(x) + w(x)
Au(z) = A(v(z) + w(x)) =0 (x € D)
limu(z + dn(z)) = 3 (94 (2) +9-(2)) + 5(9:(2) 9 (0)) =g1(a)  (x € 0D)
1

li (e — dn(2) = 5 (g4(2) + 9 (2)) + 39-(2) — g:(2)) =9-(0). (2 €D)

[\)

To form w I will now show that the above procedure corresponds to splitting the
solution into the two components that result from Green’s representation formula, modified
slightly to take into account that two-sided boundaries are used. Using % to denote the
normal derivative, Green’s formula can be stated as

u(z) = /{SD [@(93 _ s)%(s) _ u(s)g—i(l« _ 5)] ds.

Viewing the boundary curves as stroked curves in the limit as the stroke width goes to
zero, it becomes obvious that this formula can be rephrased for diffusion curves as follows:

we) = [ Jeta =9 Ghe)s - s 5w - 5)] ds
- [ |-G @ -9 ds
= [ Jote =9 (Grehs — (Gro)-) = (09 - 9D G2 - )] as.

As the p(z — s)(--+) part cannot introduce any discontinuities we naturally have

w(z) = - /5 ) - g (NI (e —s)ds.
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Note that some care must be taken in computing w(z) for x € §D, as the normal derivative
of the fundamental solution centered on z is (defined to be) zero at x.

A separation based on Green’s representation formula is also used in Zieniuk [33] [34],
but not with the explicit intention to remove discontinuities, nor to use this principle in
combination with any kind of solver. Rather, Green’s formula is used directly to lead to
a system of linear equations in which both the solution and the normal derivative of the
solution along the boundary appear. This approach is useful when having to deal with
Neumann boundary conditions for example.

Once w is determined v can be solved using any of the algorithms discussed (and more)
and then, finally, v can be formed simply by adding w to v. This technique is used in my
implementation of the AEM for diffusion curves.

4.5 Results

In this section I will show some results obtained with the analytic element method for
diffusion curves. The four images used for testing are shown in figure the segments
used in discretizing the boundaries can be seen in figure and figure [£.7] shows the
residuals in trying to match the boundary conditions, to give an impression of the precision
of the results.

The zigzag image is used throughout this thesis to demonstrate diffusion curves and
has a lot of curves. The discretization of the boundary was made to depend on the final
resolution, ensuring that the difference between the discretized boundary and the actual
boundary is negligible at the rendered resolution. In this case a final resolution of 948 x 560
was used, yielding 108 segments (+4 for the Neumann boundaries).

The closed triangle image has a very simply analytic solution based on barycentric co-
ordinates (the colors are interpolated linearly along each of the three sides of the triangle).
Although one of the nice properties of the analytic element method is that it affords an
easy error estimate, this does not necessarily work when Neumann boundaries are involved
and should of course always be double-checked. Figure [4.7 shows only greens for this im-
age, indicating that the residual doesn’t go above 1079, and indeed the root-mean-square
error of the shown result for the closed triangle image is approximately 4.76 - 1072 (the
maximum error is 2.87 - 1078). This indicates that (in this case) the analytic element
method lives up to its name, giving an essentially exact result (even though the result
is not trivial in the sense that v is zero or something like that). In comparison, for the
variable stencil size method the RMS error is 1.37 - 1072.

The “loop” image (so named because the curves sort of resemble a loop) has non-
continuous boundary conditions and tries to fill an almost closed space. Its boundaries
(apart from the Neumann boundaries at the edges of the image) consist of two horizontal
segments at either side of an opening at the bottom of half a circle (which is closed at the
top by a linear segment). The half-circle (and its closing segment) has a white color on
the inside, all other boundaries are black. As might be expected the AEM does have some
difficulty in matching the boundary conditions near the opening, but other than that it
seems to cope quite well.

The lines image has two sloping lines as boundary curves, both incident on the bound-
ary and is an example of when the AEM as currently implemented does not yield a good
result. This is most likely due to a large constant component of the error on the Neumann
boundary. In the other images the absolute value of the constant component of the error
on the Neumann boundary is roughly 10~3 or less, for the lines image it is approximately
0.1.
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Figure 4.5: Images rendered using the analytic element method for diffusion curves. Where appli-
cable curves were subdivided until they were approximately linear (see figure . In all cases the
weights along elements were defined using third-order polynomials.

VN \
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(a) zigzag (108) (b) closed triangle (3) (c) loop (33) ) lines (

Figure 4.6: Segments used for rendering with the analytic element method for diffusion curves (the
number of segments is given between parentheses). None of the segment counts include the four
Neumann boundaries at the edges of the images. Note that the extra segment in the lines image

was added manually, to aid in being able to match the boundary condition near the tip of the
upper-left line.
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(a) zigzag (|H[0]| ~ [3.76-10.3] - 107%) (b) closed triangle (|H[0]| ~ 10~*)

: ; 1073

1076

(c) loop (|H[0]] ~ 8.94 - 1073) (d) lines (|H[0]| ~ 0.135)

Figure 4.7: Residuals in matching the boundary conditions for the images shown in figure
Assuming the extremal length ¢ is not too large (which would increase the influence of H|[0])
most of the results are more than adequate for 8-bit (per channel) images, which have a smallest
representable value of 3.92 - 1073, Note that for the top two images the root-mean-square value
over the three color channels is used. Also, for the top two images the maximum and minimum
value over the three color channels is given for H[0]. Here H[0] is the constant component of the
error on the Neumann boundary.
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Chapter 5

Conclusion

In this thesis I have shown that surface methods for solving the Laplace equation have to
deal with a problematic relation between the residual Au and the error in the solution.
Specifically, with surface methods the maximum error in the image can grow quadratically
with the size of the image. Existing fast solvers for diffusion curves are not able to overcome
this problem sufficiently to be accurate enough for even an 8 bit (per channel) image. In
contrast, boundary methods are inherently immune to such problems. It is only in the face
of Neumann boundary conditions that similar problems occur with boundary methods, and
then only with respect to the residual in satisfying the Neumann boundary conditions, and
even then with only a linear dependence on the “thickness” of the region (expressed by the
extremal length /).

Motivated by a need for high quality renderings I have developed a boundary method
for solving diffusion curves based on the analytic element method. This method has the
theoretical advantages of boundary methods and is shown to give good results in practice as
well. Furthermore, based on methods developed in the literature it has the potential to be
fast as well. For example, in Craig et al. [5] the problem domain is subdivided hierarchically
to allow far-field contributions of elements to be combined as much as possible. Having
the potential to give both good and fast solutions makes the method developed in this
thesis a good addition to the arsenal of solvers for diffusion curves.

Finally, part of the newly developed solver can be reused in combination with other
solvers as well to eliminate problems with discontinuities. Most surface methods (if not all)
have trouble coping with the endpoints of curves, as either the endpoint should be assigned
a single color or the color should depend on the angle from which you are looking. This
leads to color bleeding and/or discontinuities were there should be none. By separating
the solution into an easily obtained discontinuous part and a continuous part that can be
solved as usual, all problems with handling discontinuities across diffusion curves can be
avoided.

5.1 Further work

The solver as developed in this thesis could potentially be made faster by using the nested
superblock approach developed in Craig et al. [5]. It would be interesting to see if this
could lead to a version of the AEM for diffusion curves that is fast enough for interactive
use. Especially since, with the current code, the bottle-neck is rendering the image after
the solution has been found, at least for images with relatively few elements (including all
of the test images shown in this thesis).

Also, in preliminary tests it worked quite well to dynamically split elements so as to
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divide the current residual equally over both halves of the element. Ultimately I did not
include this in the final implementation, as the performance costs were relatively high and
it did not help demonstrate the main point of this thesis. It would, however, be interesting
to experiment further with splitting schemes to see how this compares with simply using
higher order elements.

It would also be interesting to explore the full benefit of computing the discontinuous
part of the solution separately in surface methods. This would be especially interesting
for a mesh based solver, like the one developed in Orzan [I7], as this would simplify the
implementation (no need to split the curves) and could potentially improve the quality
of the result, not in the least because there is no need to average the color at endpoints
(which can cause color bleeding). But for other grid based solvers it is also interesting, as
it allows for a much more straightforward discretization of the boundary.

When looking at grid solvers again it would also be interesting to explore full multi-
grid methods, or to try and do something similar with the variable stencil size method.
Multigrid methods are meant to be able to solve this kind of problem, and I would expect
a more elaborate implementation that can “come back” to a coarser scale after having
iterated at a finer scale to fare better. But obviously this would have to be tried.

For handling curves it would be interesting to look at alternatives to subdividing. This
could include using a conformal map to “bend” the fundamental solution, see for example
Kadi and Rockwood [II], Le Grand [12], Steward et al. [24]. One advantage of using
curved elements is that you can avoid having corners where they do not need to be, this
can look nicer, but certain terms from neighbouring elements can also cancel each other
out.

In conclusion, there are a number of things which could improve the quality of the
method presented here. For one thing, rasterization artifacts can be quite noticeable
along curves in the final rendered image and it would be desirable to use some form of
anti-aliasing to combat this. In principle all of the solution should be anti-aliased, but as
it is generally quite smooth away from the boundaries it could be advantageous to only
anti-alias along the boundary curves. The cleanest way to anti-alias the solution would be
to analytically convolve ®,, with some anti-aliasing filter (like a box filter).

Given the importance of minimizing the constant component of the error on the Neu-
mann boundary, H[0], it could prove beneficial to employ the Galerkin method instead
of the collocation method. Also, handling of Neumann boundaries in general could be
improved. In some cases, having Neumann boundaries can perhaps even be avoided, but
they could potentially also be useful to have explicitly. For example, in Bezerra et al. [1} 2]
Neumann boundaries are used to have a kind of “free” boundary which does stop color
diffusion but does not give any explicit color constraints.

One way to get rid of Neumann boundaries might be to use the AEM to construct
conformal maps between the problem domain and some other easy to solve domain (similar
to what I did with the 2m-periodic strip domain) and to then use an analytical solution
in the easy domain. The advantage would be that the AEM does not have to deal with
Neumann boundaries and as such has no problems in constraining the error. Another
advantage could be that it might make it possible to deal with very general boundaries
(as the geometry of the boundary is captured in the conformal map from the easy domain
to the original problem domain).
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Appendix A

Derivatives

When implementing Neumann boundaries in the analytic element method not only ®,,(2)
has to be evaluated, but also its (normal) derivative. For this it suffices to compute the
complex derivative of ®,,(z). To see that this is true, consider the partial derivatives of
z to xg and x1: 0z/0xo = (0/0x0)(xo + x11) = 1 and 0z/0x; = i. Using these identities
(8/92)®,(z) gives all the information needed to compute the derivative in any direction]T]

Also, as later on we will use the normal derivative of ®,(z) as part of the solution as
well, we will also need second derivatives. Here, again, it suffices to simply compute the
second derivative to z and use identities like

0*®n(2) 022 P0u(z) (02 \°  P0u(2)
022 oxf 022 org) 022

Note the subtlety in placing the square, 922/9x3 is in general not the same as 82z/0x3.
For the near-field formulation

S0 = i (1= Q1) e = 1)+ (14 )@l ) 1)
1
—/ Qn(t, 2) dt]
-1
= n_1|_ . |:5az (1 _ Zn-i—l) ln(z _ 1) o % ((_1)n+1 _ zn-i—l) ln(z + 1)

+(1- z)Qn(l,z)Z —t (1+ Z)Qn(—l,z)z 1

-/ Q01,2 dt]

—1
1

R {(—(n +1)2")In(z = 1) = (n+ 1) (—=2")In(z + 1)

1
+Qn(—1,2) — Qn(1,2) —/_IQSPvl)(t, z) dt]

=z"[ln(z+1)—In(z —1)] — n—ll— . [/1 QO (¢, 2) dt + /1 QU (t, 2) dt]
-1 -1

1
=2"[ln(z+1) —In(z — 1)] — /_1 Qn-1(t, z) dt.

'This can also be seen in the light of the Cauchy-Riemann equations (see section [3.2)), which are indeed
satisfied by @, (z).
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Again, this can be evaluated efficiently and easily using a recurrence equation. Similarly,
the second derivative can now be found as (note that for n = 0 the terms multiplied with
n should indeed be considered zero)

2
% ﬁ/[(z)zgz[ In(z+1) —In(z — 1)] / intzdt]
1
=nz"tn(z+1) —In(z — 1)] + zj— 1~ / Q" 0’1
1
=nz"n(z +1) —In(z — 1)] + ZZ_:1 po—

1
_ / nQns(t,2) — QM (1, =) dt
1

n n

z z
z+1 2z-—1

= nz" 1 In(z+1) —In(z —1)] +

1
_n/ Qn—?(t7z) dt+Qn—1(1vz) _Qn—l(_17z)
-1

n n

z

1+z+1—z

= ny 1 n(z+1) —In(z —1)] +

1—2" (=) =2"

1
- _o(t, z)dt
n/_lQn 2(t, 2) +1_z+ 112

=nz"n(z +1) —In(z — 1)] + (=1)" + ! /1 Qn—2(t,z)dt
I+2z 1-=z M

For the far-field formulation

1
(,i/ltnln(z—t)dt:B(l,n—i—l) [;Zln(z_l)+(_1)naazln(z+l)]
Oolin w0 191
+;iB(+1, +1)[< T az(l_z)l}
—i—;B(l—i—l,n-i- 1) [(—1) +2(1+Z)i+1 g —Z)"H}
N ] n 1 1
= ;B(/I/+ IL,n+1) [(1) +2 1+ 2yt o (1 —Z)”l}
and
872 ! n n(z — = S 7 1 n _1\n+3 1 B 1
822/_1t In( t)dt_,-z;( +1)B(i+1,n+1) [( 1) T (1_2)1“]'
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