
C
ou

rs
eAVR ByteForth

version 2.00

c© Willem Ouwerkerk

13th April 2004

II AVR ByteForth versie 2.00 c© Willem Ouwerkerk 2003

Contents

Contents IV

1 Installation 1

1.1 What is needed . 1

1.2 Software . 2

1.3 Installation of the software . 2

1.4 The configuration of the software . 2

1.5 ByteForth functionkeys . 3

1.6 Adress of the HCC Forth gg . 4

2 Fast Course 5

2.1 How to begin . 5

2.2 The next small step. 6

2.3 How to define new words . 6

2.4 Variables, etc. 7

2.5 Control structures . 8

2.6 The AVR assembler . 9

2.7 Special Function Registers (SFR’s) . 10

2.8 Pinconfiguration of the AT90S2313 . 11

2.9 The ByteForth cross compiler . 11

2.10 How to use the decompiler . 12

2.11 How to use the simulator . 12

2.12 How to make an application . 13

2.13 How to enter a programm . 14

2.14 Compiling (loading) a programm . 14

2.15 Local variables . 15

2.16 Defining new datastructures . 15

2.17 An application with code and interrupts 18

A What is new in 8051 ByteForth 2.00? 20

B El Cheapo dongle circuit 21

B.1 List of parts needed for El Cheapo . 21

B.2 Circuit El Cheapo . 21

B.3 How to build the El Cheapo . 22

AVR ByteForth versie 2.00 c© Willem Ouwerkerk 2003 III

C Interesting AVR addresses 23

IV AVR ByteForth versie 2.00 c© Willem Ouwerkerk 2003

1 Installation

1.1 What is needed

To install and use AVR ByteForth system you need:

– PC or compatible with a version of MS Windows.
– (In System Programmer) Flash and EEPROM program adapter [dongle, in

packet].
– A 9 V, 100 mA DC power supply. A small unstabilised 9 to 12 V one is sufficient

most of the times.
– AT51 version-2 breadboard for testing and execution of applications [in packet].

You can also use the STK200(+) starterkit from Kanda or the STK500 from
Atmel.

First connect the ISP adapter to the printer port of your PC. Start with PRN1. This
can be changed later. This ISP is technically equal to the adapter that Kanda Sytems
makes for the STK200(+), only the connector on the print side is different.

More information on the pages 21, 21 and 23.

Figure 1.1: The AT51-2 print

AVR ByteForth versie 2.00 1

1.2 Software

The ByteForth macrocompiler that comes with the packet runs on the PC and is:

– An optimalising Forth crosscompiler with software simulator.
– An AVR assembler with structural controlestructures.
– An ISP flash programmer for the AVR family.

There is also:

– A library with tested software.
– Some ready made applications.

1.3 Installation of the software

1. The AVR ByteForth environment can be installed from the floppy disk that
comes with the packet by putting the floppy in the diskette drive and giving the
command A:SETUP C: from DOS or a DOS box. You software will be installed
in the directory AVRF on drive C:. The batchfile AVRF.BAT starts ByteForth. You
can move this batchfile to your batch directory or any other place on your hard
disk that is convenient.

2. Connect the programmer and start ByteForth. If the configuration is right you
get the message

AVR ByteForth crosscompiler vsn 2.00 (c) W.O. 2003
ISP Flashprogrammer versie 1.31 (c) W.O. 2000-2003
etc.

3. Next type a few times <enter>. ByteForth will react with OK.
4. Type COLD <enter>. ByteForth will again give his startup message.

1.4 The configuration of the software

AVR ByteForth and the programmer are now installed and ready for work. All settings
for ByteForth cen be changed by editing the file AVRF.CFG. As editor you can use
the public domain SZ by Tom Zimmer, but you can use any editor you like. This file
has five sections:

1. Where to find libraries and auxilery files.
2. The strings for the default file header. (see also PROJECT).
3. The ISP clock speed anf the directory you want to use for programming.
4. Settings for ISP port and tracer.
5. Your favorite DOS editor, DOS-shell and other DOS auxiliary files.

2 c©2003 HCC Forth-gg & Willem Ouwerkerk

\ Configuration file for AVR ByteForth 2.00 Beta version.

\ Defineer paths to library and help files
S" C:\AVRF\LIB" LIBPATH PLACE
S" C:\AVRF\HELP" HELPPATH PLACE

\ The three strings proj$, cat$ en creat$ can be changed here.
\ Maximum length: 54 chars.
S" AVR ByteForth, a pub.\ domain Forth for the AT90Sxxxx" PROJ$ PLACE
S" Application, size: bytes." CAT$ PLACE
S" Willem Ouwerkerk" CREAT$ PLACE
\ 1--------10--------20--------30--------40--------50---

100 SET-PAUSE \ Set ISP clockpulse delay

\ Path to your AVR ByteForth work directory
SILENT CD C:\AVRF\WORK VIDEO

\ Primary settings of AVR ByteForth
PRN1 (PRN1, PRN2, PRN3 or PRN4)

\ ECHO-OFF (default is on)
\ PORTS-OFF (default is on)
\ STEP-ON (default is off)

\ Add your personal favorite programms

DEBUG DEFINITIONS

S" sz " SET-EDITOR \ Your editor, do not forget the space!
S" vc" SET-SHELL \ Dos shell

\ Programm name ... AVR ByteForth name ...

S" hp " DOS: HP \ W.O’s HP PCL print programm
S" gloss " DOS: GLOSS \ L. Benschop’s glossary generator

\ S" list " DOS: L \ View a file, (C) Vernon D. Buerg
\ S" grep " DOS: GREP \ Programm to look for text in files

1.5 ByteForth functionkeys

De actieve toetscombinaties en functietoetsen van ByteForth zijn:

<F1> Helpfile for ByteForth commandline editor.
<F2> Online ByteForth help function.
<F3> Show present content of directory.
<F4> Start editor with the current textfile.
<F5> Compile the current textfile.
<F6> Open operating system shell.
<F7> Select and/or show a directory.
<F8> Start editor on the line of the last error.
<F9> Open and close a logfile.

<Alt-X> Exit, back to DOS/Windows.

AVR ByteForth versie 2.00 3

1.6 Adress of the HCC Forth gg

For questions and and other information about AVR or 8051 ByteForth send an email
with a completel description of the problem. Do not forget to add the source code.

Adres: HCC Forth gg
p/a Boulevard Heuvelink 126
6828 KW Arnhem

Tel: 026-4431305

Email: voorz@forth-gg.hobby.nl
Homepage: http://www.forth.hccnet.nl

4 c©2003 HCC Forth-gg & Willem Ouwerkerk

http://www.forth.hccnet.nl

2 Fast Course

If you are not familiar with AVR ByteForth you are advised to try and enter all exer-
cises in the left column of the following pages. This will demonstrate all specialities
of AVR ByteForth and will end with a few basic applications.

You have to enter all text that is on the left side of the pages. <cr> means that you
have to press the <enter> key.

Capitals and non capitals have equal meaning. Spaces are important: everything
separated by a space is a number or a Forth word. A Forth word is a command
to Forth. You can make a new Forth words yourselve by combining existing words.
ByteForth answers with ‘OK’ if a line of words you typed is executed correctly.

If everything got mixed up or if you lose track on what happened start again and pay
more attention this time. Do not forget to read the remarks on the right side of the
page and PAY ATTENTION TO WHAT IS SHOWN ON THE SCREEN.

Each chapter starts with a short introduction for beginners. Advanced Forth users
only have to pay attention to what is special in ByteForth.

2.1 How to begin

Forth is a stack oriented programming language, so the look is different from lan-
guages like BASIC. It is more like an HP calculator. To calculate 1 + 2 on such a
calculator you have to enter <1> <Enter> <2> <+>. First ‘1’ and ‘2’ are pushed
on top of the stack. The ‘+’ adds the top two numbers. These two numbers are
discarded and the result is left on top of the stack and shown on the display. To write
12+ instead of the more common 1 + 2 = is called Reverse Polish Notation (RPN).
Forth works the same way.

Type in: Explanations and exercises:

<cr> You should see ‘OK’.

4 <cr> 4 is placed on top of the stack and OK is shown
on the screen.

ByteForth uses 8-bit integers.

. <cr> ‘.’ shows the number on top of the stack.

. <cr> Hee, the stack can be empty.

1 2 <cr> Push two numbers on the stack.

.s <cr> .S shows the stack without changing it.

+ . <cr> In RPN numbers come first, followed by the
operator.

130 10 - . <cr> More calculations in RPN.

5 dup <cr> Try DUP.

* . <cr>

There are many words to manupulate the stack. In general first the arguments must

AVR ByteForth versie 2.00 5

be pushed on the stack, next a command (word) must be given that works on that
data.

2.2 The next small step.

In (Byte)Forth you can easily change the base that is used for number representa-
tion, for example the Forth word HEX makes the base 16 (hexadecimal) and DECIMAL
10. Another way to represent numbers is with a prefix character: # means deci-
mal, $ hexadecimal and % binairy. Other prefixes are & for ASCII and ^ for a control
character. A few examples:

100 ms <cr> Wait 100 milliseconds.

12 <cr> Push the number 12 (decimal) on the stack.

hex <cr> Change base to hexadecimal.

. <cr> C hexadecimal equals 12 decimal.

10 decimal . <cr> Did you expect this answer?

$10 250 ms . <cr> Push hex 10 on the stack, wait 250 millisec-
onds and show the number in decimal mode.

%1001 . <cr> Push the binary number 1001 and show it
decimal.

10 12 * 50 - 2/ . <cr> A more advanced calculation: multiply 10 by
twelve, subtract 50 from the result, divide by
2 and show the result.

page <cr> Clear the screen.

There are two types of 8 bit integers: signed
and unsigned. The possible values (range) of
unsigned 8 bit integers is 0 255. For unsigned
8 bit integers the range is -128 +127. Which
representation is used depends on the Forth
words that handle them.

1000. 300. d+ d. <cr> 16 bit integers are also possible,

Help is available. Type for instance HELP D+
to get more information about D+.

2.3 How to define new words

Until now you used Forth as a calculator: each line of words is executed immediately
after you pressed <enter>. In Forth programming is done by defining new words,
with new names, by combining the words that already exist. The words that the new
word is made of will later be executed when the new word is called by typing the new
name or if it is made part of an even newer word that is executed.

6 c©2003 HCC Forth-gg & Willem Ouwerkerk

count <cr> Oops, error. count is not (yet) in the set of
available Forth words.

: count 3 + ; <cr> But here count is made. The definition of a
new word begins with a colon (:), followed by
the name of the new word.

10 count . <cr> Everything between this new name and the
semicolon (;) at the end is code that will be
executed when the new word is called.

: countloop <cr> New words can be used in words that are
made later.

100 <cr>

5 0 do count loop ; <cr>

countloop . <cr> A new word is compiled and made a part
of Forth. A compiled word is only executed
when it is called later, as a command from
the keyboard or as part of a later definition.
You made countloop and used count. Next
you called countloop and it was executed, to-
gether with count. In ByteForth you can make
and test words in this way. More about this
later.

2.4 Variables, etc.

Most programming languages are made for computers with a large RAM memory.
Microcontrollers are different and the little memory they have must be used as effi-
cient as possible. To use a stack instead of variables saves memory because the
memory is used again and again, but variables, with fixed position in memory, are
sometimes needed. Only use them when it is absolutely necessary.

Variables are suitable for communication between two programs that run at the same
time, like interrupts or programs or in a multitasking system. If a lot of data must be
exchanged arrays are useful.

AVR ByteForth versie 2.00 7

Empty <cr> Discard previous work.

In Forth a variable is a word that leaves the
address where the data is stored on the stack.

variable beer <cr> variable defines a global variable. Here a
variable is made called beer.

5 beer ! <cr> The number 5 (! = store) is stored into the 8
bits place in memory reserved for the variable
beer.

beer @ . <cr> Read the contents of the variable beer and
put it on top of stack. @ = fetch.

beer 2constant peep <cr> A constant is a variable that can not be
changed and holds here the address of the
variable beer. Calling the constant peep (2
bytes) pushes the address of beer on the
stack so peep does the same as beer.

peep @ . <cr> Push the value that is stored into the variable
beer on top of the stack,

10 +to beer <cr> The variables in Forth can also be changed
by using so called prefixes. Here 10 is added
to the number that is stored in beer.

beer @ . <cr> Test if this is true.

clear beer <cr> The use of prefixes like clear makes a pro-
gramm efficient and easy to read.

from beer . <cr> Another way to read a variable: you see, no
beers left.

All numbers are integers in ByteForth. Data, a number or an address, can be 8 or 16
bits and must be defined in Forth before it can be used. The following data structures
are available in ByteForth:

VARIABLE 8 bits variabel 2VARIABLE 16 bits variabel

VARIABLES array of 8 bits variables 2VARIABLES array of 16 variables

VALUE 8-bits TO variabele REGISTER 8 bits register variabel

In Forth you can make variables that are only defined inside a colon definition, You
can find more about these about local variables on page 15. Use HELP ‘naam’ <cr>
to find an explanation for a Forth word or Forth jargon.

2.5 Control structures

The following examples use a few control structures work with strings. These exam-
ples show how the use of the stack is documented in Forth. ‘(--)’ means that the
word does expect data on the stack and that it leaves nothing behind.

atom inline$ If you want to use the word ." you have to
import the macro inline$. This is done with
atom. See page ?? .

8 c©2003 HCC Forth-gg & Willem Ouwerkerk

: .beer (--) <cr> Define a word that shows on the screen how
much beer is left. The word is called .beer
and the comment (between comment paren-
theses) means that .beer needs no data on
the stack and leaves nothing behind.

from beer ?dup if <cr> Test if there are beers left.

." still " . <cr> If yes, show how many bottles.

." bottles " <cr>

else <cr>

." nothing left " <cr> If not, show this text.

then ; <cr>

.beer <cr>

You want to give a party for your friends. For party you need a begin . . . until loop
controle structure with a nested if inside.
: party (--) <cr> party does not use the stack.

24 to beer <cr> You buy a box with 24 bottles.

begin <cr> Start the loop.

cr ." Bottle? Y/N " <cr> Show question.

key &Y = if <cr> If the capital Y is typed . . .

-1 +to beer <cr> take a bottle from the box.

.beer <cr> How many are left?

then <cr>

from beer 0= until <cr> party ends when there is no beer left.

cr ." See you next time " ; <cr>

ByteForth knows also the control structures: BEGIN WHILE REPEAT, CASE, FOR NEXT,
SELECT, AHEAD en ENTRY.

2.6 The AVR assembler

For those parts in a programm for which good timing is essential there is often a
need to programm directly in assembler or machine instructions. Just like many
other Forth systems ByteForth has a build in assembler. In the next example this
assembler is used. Try it, even if you do not understandeld everything.

AVR ByteForth versie 2.00 9

code 6+ (x1 -- x2) <cr> code starts the AVR assembler. The name

r16 x+ ld, <cr> of this new word is 6+ and it will add

r16 6 addi, <cr> 6 to the number on top of the stack. The last

-x r16 st, <cr> command in an assembler definition must be
ret,

ret, <cr> (return from subroutine) because ByteForth is
subroutine

end-code <cr> treaded. end-code ends the assembler defi-
nition.

5 6+ . <cr> Try the new word.

: replenish (-- u) <cr> The word replenish will replenish your

from beer <cr> stock of beer and shows, with from, how

6+ to beer <cr> many bottles are in stock.

from beer ; <cr>

replenish . <cr> It works!

replenish . <cr>

2.7 Special Function Registers (SFR’s)

A defining word is a word that makes a new word. The defining word SFR makes
words that give access to the I/O space of the AVR microcontroller. All special in-
ternal hardware of the AVR chips can be accessed in this way. On an AT90S2313
are two timers, a pulswidth modulation unit, an EEPROM, I/O-gates, a watchdog, an
UART (RS232) and a comparator. The other microcontrollers of the AVR series can
have more timers. an ADC, a SPI or an I2C interface, etc.

$18 sfr portb <cr> Make a new word portb to access port B of
the AT90S2313, Register $18 is connected to
the pins PB0 PB7 of this port.

-1 setdir portb <cr> Make port B an output. See the pin diagram
of the AT90S2313.

portb . <cr> Test the status of port B.

set portb <cr> Make all output lines of port B high.

portb . <cr> Can you see what happaned?

1 to portb <cr> Make bit 0 of port B high. It works!

portb . <cr> Try.

$18 1 bit-sfr output <cr> Prepare bit 1 of port B for output.

set output <cr> Make output high.

portb . <cr>

clear output <cr> Make output low again.

10 c©2003 HCC Forth-gg & Willem Ouwerkerk

set output <cr> Make output high.

portb . <cr>

clear output <cr> Make output low again.

$18 7 bit-sfr input <cr> Prepare bit 7 of poort B for input.

0 setdir input <cr> Make only bit 7 an input.

set input <cr> To use a bit for input this bit must be made
high first because of the the build in pull up
resistor.

from input . <cr> Read input. AVR inputs are always active
low!! The from word behaves in a special way
when it is used for output to a port register.

help sfr <cr> For more information read the description of
SFR.

2.8 Pinconfiguration of the AT90S2313

You can find the complete datasheets for the AVR series at the ATMEL website. For
the link see page 23 of this manual.ation

PDIP/SOIC

Figure 2.1: Pin configuration of the AT90S2313

2.9 The ByteForth cross compiler

The ByteForth Forth compiler is a cross compiler. This means that the source code
of your Forth programm is first compiled on another platform, here a PC, to be ex-
ecuted later on a AT90S2313. After compilation on a PC the resulting code must

AVR ByteForth versie 2.00 11

be transferred to a micro controller for execution. The PC is called the host, the
AT90S2313 is the target.

words <cr> Show all words in the current vocabulary.

(zie je output & input) The last words you see are output and input.
Deze woorden we made in the last paragraph
and are now part of the Forth dictionary.

>host <cr> Switch to the Forth system on your host, the
PC.

output . <cr> De woorden output en input are defined
on your micro controller and unknown to the
Forth on your host.

>cross <cr> Back to ByteForth.

output . <cr> There they are again!

words <cr> Try.

atom + <cr> Import the + macro with name into the Byte-
Forth vocabulary.

12 13 + . <cr> Push two numbers on the stack and and exe-
cute +. Show the result on the screen with .,
after which the stack is empty!

: add 12 13 + ; <cr> Each newly defined word can be tested.

add . <cr> Easy!

2.10 How to use the decompiler

see replenish <cr> Nearly everything in a compiled ByteForth
programm is machine code.

see add <cr> Decompilation gives a list of mainly opcodes
with a few RCALL’s or RJMP’s to another
word.

see 6+ <cr> Press space to see the opcode of the next
word and any other key to stop.

2.11 How to use the simulator

The ByteForth programs that run on the AVR controller are compiled as stand alone
so they can not be written and tested on the controller like programms on a normal
Forth system. For this reason we made the simulator that runs on a PC. The simu-
lator is transparant and can be used also be used as a tracer for finding bugs. There
is hardly any difference with writing and testing on a conventional Forth system.

12 c©2003 HCC Forth-gg & Willem Ouwerkerk

tracer-on <cr> Activate tracer.

.tracer <cr> Show tracer properties.

add . <cr> Can you see the output of the programm or is
it too fast?

step-on <cr> Single step mode.

add . <cr> Execution in single step mode, Press space
to see the result of the next opcode.

step-off <cr> Normal mode.

1 +to portb MANY <cr> Execution on the AVR controller. Can you
see the change of the output of portb? Press
space to end execution.

tracer-off <cr> Leave tracer mode . . .

empty <cr> Discard previous efforts.

2.12 How to make an application

Microcontrollers are mainly used to control hardware, most of the time without key-
board and monitor. As a simple application you can connect an array of eight leds
to PORTB of the AT90S2313. The first experiments in the ‘Egelworkbook’ show how
to do this and how to switch the leds on and off. In ByteForth this gate must be
initialised as a variable with SFR (Special Function Register).

AVR ByteForth versie 2.00 13

empty <cr> Clean rubbish.

90S2313 <cr> Use memory map for a AT90S2313.

needs target <cr> Add labels for the AT90S2313.

Make binary code for this processor.

portb sfr output <cr> Define Port-B as output.

: counter (--) <cr> Begin of the application . . .

setup-byteforth <cr> Install the Forth machine (you have to do this).

-1 setdir output <cr> Use Port-B as output with the direction regis-
ter.

clear output <cr> Make all output lines zero.

begin <cr> Start of main loop. The output is used as a

1 +to output <cr> binary timer with steps of

250 ms <cr> 250 millisec that runs

again ; main <cr> until the end of time.

MAIN sets the reset vector to the memory ad-
dress where the application is stored. Test if
the ISP-cable is connected to the STK200(+)
board, an AT51 version-2 board of the AT8252
board.

e p v <cr> Reset the board with the e command, load the
programm with p (program) and verify with v
(verify). Now the controller is ready and the
program is running ! !

2.13 How to enter a programm

Type: EDIT DEMO <cr>. This makes an empty file DEMO.FRT and starts the edi-
tor. F1 gives help about the use of this editor. Enter the programm text of the last
example, except for the last line. ‘F10’ saves the file and returns to ByteForth.

2.14 Compiling (loading) a programm

Type: IN DEMO <cr>. The file DEMO.FRT will be translated line by line into AT90S2313
machinecode (compiled), at least if you did not make errors while typing and every-
thing is correct Forth. All newly defined words can now be used. Experiment with
them to learn how to use them and pass on to the the next section. If you did made a
mistake the compiler stops. If you use NE.COM or SZ.COM as editor on your PC you
can start the editor by typing WHAT. The cursor will be on the line where the compiler
found the error.

14 c©2003 HCC Forth-gg & Willem Ouwerkerk

2.15 Local variables

Keeping track of the data on the stack can be confusing and often makes Forth pro-
gramms difficult to understand. Local variables are made by moving the top element
of the stack to a fixed position in memory and giving them a name you can choose
freely, Local variables only exist during the execution of the colon definition in which
they are defined. They are used in the same way as VALUEs.

: calc1 (a b c -- d) <cr> Calculations on three numbers that are high-
est on the stack.

locals| c b a | <cr> The one on top is moved to a place in memory
and gets the name ‘a’, the second ‘b’ etc.

a b * c - 2/ ; <cr> No need for stack manipulations to calculate
the sum.

10 12 50 calc1 . <cr> The result is the same as the sum we cal-
culated at the begin of this course, only here
we do not have to to type all commands each
time. Keep in mind that local variables need
more memory than when the data is stored on
the stack.

: calc2 (a b c -- d) <cr> The same calculation, but now with a number
temporarely stored on the return stack.

>r * r> - 2/ ; <cr>

10 12 50 calc2 . <cr> The result should be the same.

see calc1 <cr> See how much code is made for calc1 and
calc2. There is no need to understand all
code!

see calc2 <cr> calc1, with locals, needs 41 opcodes, calc2,
with keeps the data on the stack, only 22,
nearly half the size of calc1. Clearly it has a
price to make a Forth programms more easy
to understand.

2.16 Defining new datastructures

Advanced Forth programmers create datastructures suitable for their needs with
CREATE and DOES>. Here are two examples of datastructures in ROM and RAM.
AVR ByteForth has a special colon definition, starting with a double colon, to define
a new data structure.

AVR ByteForth versie 2.00 15

ram <cr> The elements of the new datastructures must
be stored in RAM.

:: vars <cr> The new type of datastructure is called VARS.
An element

of this type is made when VARS is called.

create <cr> CREATE causes an element of the new struc-
ture to get a name at its creation by which it
can be called.

allot align <cr> ALLOT reserves a number of bytes for this ele-
ment in RAM, ALIGN adds empty bytes to the
just reserved block of memory to let the block
end at the right position in memory for the pro-
cessor.

does> d+ ; <cr> DOES> makes that, when the element is called,
the address where the block of data starts is
pushed on the stack and D+ increments this
address by the 16 bit number that was on top
of the stack when the element was called.
Adresses are 16-bits numbers, so we must
use D+, a 16-bits addition. The index must
be a 16 bits number too!!

10. vars array <cr> Make an element called ARRAY of type VARS
with 10 bytes storage.

12 9. array ! <cr> Store the number 12 on position 10 of the ar-
ray.

100 0. array ! <cr> Store 100 in position 1.

0. array @ . <cr> Read position 1, OK?

9. array @ . <cr> Read positie 10, OK too?

16 c©2003 HCC Forth-gg & Willem Ouwerkerk

rom <cr> Next a definition for a datastructure that is
stored in ROM.

:: exec <cr> The type is called EXEC and holds a list of ex-
ecution tokens.

create (xn ... x1 n --) <cr>When EXEC is called and an element is made
a list of ‘n’ execution tokens must be on the
stack in reverse order (xnx1).

dup 1- , align <cr> reverse order of ‘x1’ . . . ‘xn’.

0 do d, loop <cr> The number of tokens and the tokens them-
selves are stored into ROM.

does> (n -- i*x) <cr> When called the number ‘n’ of the token that
you want to use must be on the stack.

2>r 2r@ rom@ <cr> After a few manipulations and calculations
2ROM@ finds the right

umin 1+ 2* 0 <cr> execution token in the table.

2r> d+ <cr> The token is executed by EXECUTE.

2rom@ execute ; <cr> The last token ‘xn’ is executed if ’n’ is out of
range. ’xn’ uitgevoerd.

: nul 0 ; <cr> Four tokens for in the execution table.

: een -1 ; <cr>

: twee -2 ; <cr>

: drie -3 ; <cr>

’ drie ’ twee <cr> Prepare the four tokens to be used by when
the element is created.

’ een ’ nul <cr>

4 exec wim <cr> Define an execution table called ‘wim’ with
four elements.

naam wim.

0 wim . <cr> The first token is executed.

3 wim . <cr> The fourth token is exewcuted.

5 wim . <cr> Here the fourth token is executed because 5
is illegal. Do not worry is this is not clear to
you. CREATE DOES> is advanced Forth.

AVR ByteForth versie 2.00 17

2.17 An application with code and interrupts

empty <cr> Discard all previous made rubbish and start
editor in a special way.

project counter <cr> Make a file containing a standard text block.
The strings in the block can be changed in
the file AVRF.CFG.

Now enter the following pro-
gramm.

register counter Make an 8 bits counter register variable.

code tel (--) Define the interrupt word.

r16 push, Save the registers first.

r17 push,

r17 sreg in, Save the status register in R17. Each

r16 -156 ldi, forty milliseconds the variable counter is

tcnt0 r16 out, incremented.

adr counter inc,

sreg r17 out, Restore the status register.

r17 pop, Restore the registers.

r16 pop,

reti, An interrrupt word, like this one, is ended by
reti.

end-code t0-overflow A common word ends with a ret, command/
The command t0-overflow sets tel into the
right interrupt vector of the AVR.

code setup-tel (--) Make a word that prepares timer-0 as a clock
that

adr counter clr, gives an interrupt every 40 ms.

r16 -156 ldi, Prepare timer-0.

tcnt0 r16 out,

r16 5 ldi, Enable timer Timer-0 on with prescaler 024.

tccr0 r16 out,

r16 2 ldi, Enable Timer-0 interrupt on.

timsk r16 out,

sei, Enable Interrupt mechanism.

ret,

end-code

18 c©2003 HCC Forth-gg & Willem Ouwerkerk

portb sfr leds Output to the LEDs at Poer-B

:main (--) Start main programm

-1 setdir leds Set the direction register to make Port-B out-
put.

setup-tel Enable tel interrupt

begin Start endless loop

counter read counter

invert to leds Go backwards and show it in the leds

again ; Terug naar begin

You can leave the editor here.

IN <cr> The word IN always acts on the last used file.
This makes programming a little more easy.

e p v <cr> Start the interrupt example word on a
AT90S2313 chip on a AT51 version-2 or
STK200(+) board. and look cat the counter
to see if everything is well.

empty <cr> Discard your garbage.

ByteForth has a few special words for’High-level’ interrupts. See the files HILEVEL1.FRT
and HILEVEL2.FRT in the EXAMPLES directory.

AVR ByteForth versie 2.00 19

A What is new in 8051 ByteForth
2.00?

AVR ByteForth 2.00, the new version, is completely new and is made competible with
8051 ByteForth versie 2.00. The optimalisation is better and the symbolic disassem-
bler/decompiler is made as elegant as the one in the 8051 version. The ByteForth
systems version 2.00 are more interactive which means that they behave more like
a standard Forth system. The ISP programmer uses a driver for the communication
with the parallel gate. From this version on ByteForth only runs on PC’s. The ATS
board version is discontinued.

A list of things that are made better:

– An extensive set of CHForth words for printing is added to the debugger.
– An ISP programmer for the 90S2313 . . . ATmega64 is build in.
– VALUE, an 8 bits TO-variabele is addad.
– The optimalisator has many new special case optimalisations.
– There are new macro’s for high-level interrupt support etc.
– User defined macro’s are possible.
– CREATE and DOES> added.
– The display of the build in tracer is better.
– Starting with ByteForth version 2.00 the 8051 and AVR versions are equal.
– Graphic LCD, ADC etc. words were added to the library files.
– About ten new example applications.
– All examples from the ’Egel Werkboek can be used with this version. (The

’Egel werkboek, in Dutch, is sold by the HCC Forth-gg).
– A few new small devellopment systems are supported: for the AT90S1200 and

the AT90S2313 the AT51-2 print, and for the AT90S8515 and the ATmega161
with 44 pins PLCC case the AT8252 printje, the Ushi robot with prints for the
AT90S2313, AT90S4433, the ATmega8, ATtiny26 en for the ATmega16/32.

– This manual is extended and made better.

20 c©2003 HCC Forth-gg & Willem Ouwerkerk

B El Cheapo dongle circuit

The El cheapo interface is the cheapest way to experiment with AVR ByteForth.
Together with the demo version of AVR ByteForth, an AT90S2313 and a few parts
you only have to spend about 10 Euro.

B.1 List of parts needed for El Cheapo

R1 220Ω Resistor 1/10 Watt
R2 220Ω Resistor 1/10 Watt
R3 100Ω Resistor 1/10 Watt
C1 100nf Resistor 1/10 Watt
DR1 bandkabel 50 cm of 6-wire flat cable
J1 D25-MALE DB25-male for solder connections
J3 HDR6 6 pole female header
H1 Sub-D cap Housing for DB25-connector

B.2 Circuit El Cheapo

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

J1

DELTA_25HM

1
2
3
4
5
6

J3

HDR_6

R
1

220

R
2

220

C
1

1
0
0
n
f

SCK

MOSI

RESET

MISO

D25 MALE STEKER USHI AVR PROGRAMMER VOOR EEN LAAG BUDGET

VCC

R
3

100

GND

Figure B.1: Circuit El Cheapo

AVR ByteForth versie 2.00 21

B.3 How to build the El Cheapo

1) Soldier the resistors R1, R2 and R3 to the DB25-connector J1.
2) Do the same with the condensator C1.
3) Connect the 6 wire flat cable DR1 according to the diagram.
4) Connect 6 pole female header J3 to the other side of the cable, Do not

forget to do heat shrink tubing around each wire. The ground connec-
tion (Gnd) should be marked with black shrink tubing.

5) Fit the bend protection and the housing H1.

22 c©2003 HCC Forth-gg & Willem Ouwerkerk

C Interesting AVR addresses

There are many interesting websites on the Internet about the microcontroller series
AVR Byteforth runs on. If you can not find what you are looking for, try the AVR web
ring. Most of the sites that follow are part of it.

http://www.avrfreaks.net A very extensive site fully dedicated
to the AVR microcontroller. You
can find information about the hard-
ware, chip design, software, appli-
catiopn notes, academy (courses),
design notes (suggestions), forums
etc.

http://luna.spaceports.com/~pfleury/ A nice site about a do-it-yourselve
starterkit. The idea to use the
74HC125 for the ISP dongle was
found on this site. This starterkit
uses a breadboard with spring con-
nections.

http://shop.kanda.com/shopnav/shop.php3 The makers of the well known
STK200(+) & STK300 starterkits.
They still sell the STK200+ kit with
the CD-Rom, ISP dongle and a
AVR microcontroller for $ 65,-.

http://www.atmel.com/products/avr/ The maker of the AVR- and AT89-
microcontrollers. A good website
where you can find all the data
sheets of the various ATMEL micro-
controllers. There is a FAQ for each
controller type and many applica-
tion notes, often with code.

http://www.dontronics.com/atmel.html Makers of the so called Simmsticks,
compact prints for micro controllers
with standard connections. A very
extensive site with many links to
other interesting AVR sites.

http://www.hth.com/loaa/ An initiative of Christer Johansson
who keeps this list of public domain
(AVR) code examples up to date.

http://www.olimex.com/dev/ Site of the print manufacturer
Olimex. They make prototype prints
for 8, 20, 28 and 40 pins DIL AVR
chips. They also make a dongle
that is compatible with the Kanda
dongle (but the leads is very short).
Two more development prints are
for the AT90S2313, one with relais,
RS232 optocouplers etc., the other
with LCD, RS232, keyboard, buzzer
etc.

AVR ByteForth versie 2.00 23

http://www.avrfreaks.net
http://luna.spaceports.com/~pfleury/
http://shop.kanda.com/shopnav/shop.php3
http://www.atmel.com/products/avr/
http://www.dontronics.com/atmel.html
http://www.hth.com/loaa/
http://www.olimex.com/dev/

	Contents
	Installation
	What is needed
	Software
	Installation of the software
	The configuration of the software
	ByteForth functionkeys
	Adress of the HCC Forth gg

	Fast Course
	How to begin
	The next small step.
	How to define new words
	Variables, etc.
	Control structures
	The AVR assembler
	Special Function Registers (SFR's)
	Pinconfiguration of the AT90S2313
	The ByteForth cross compiler
	How to use the decompiler
	How to use the simulator
	How to make an application
	How to enter a programm
	Compiling (loading) a programm
	Local variables
	Defining new datastructures
	An application with code and interrupts

	What is new in 8051 ByteForth 2.00?
	El Cheapo dongle circuit
	List of parts needed for El Cheapo
	Circuit El Cheapo
	How to build the El Cheapo

	Interesting AVR addresses

