ciforth manual

A close-to-ISO/common intel/computer intelligence/ CH+ forth.

This is a standard-ISO Forth (mostly, see the section portability) for the configuration called
wina64:

e version 2020Jun03

e (4 -bits protected mode

e running under MS-Windows

e contains security words

e the full ISO CORE set is present, possibly after loading

e headers with source fields

Albert van der Horst
Dutch Forth Workshop

Copyright (©) 2000,2015 Dutch Forth Workshop
Permission is granted to copy with attribution. Program is protected by the GNU Public License.

1 Overview

Forth is an interactive programming system. ciforth is a family of Forth’s that can be generated
in many different version for many different operation systems. It is sufficiently close to the ISO
standard to run most programs intended to be portable. It deviates where less used features
where objectionable to implement. See Chapter 4 [Manual], page 7, Section Portability.

This file documents what you as a user needs to know for using this particular version of
ciforth called “wina64” once it is installed on your system.
ciforth consists of three files:
e wina.exe : the program
e One of ciforth.ps ciforth.pdf ciforth.html : the documentation

e forth.lab : source library for auxiliary programs

These files are generated together by a generic system from the file £ig86.gnr . The docu-
mentation applies to the ciforth with which it goes.

If your Forth doesn’t fit the description below get a new version. The information below
allows an expert to reconstruct how to generate a corresponding version. Not all of it may make
sense to you. Tell him whether you want to fit the Forth to the description or vice versa (see
Chapter 3 [Rationale & legalese|, page 5).

These are the features:

All ciforth’s are case sensitive . This is version 2020Jun03. It is running in protected mode.
It is running under MS-Windows Blocks are allocated in files. A number has a precision of 64
bits. It has compiler security, sacrificing some ISO compatibity. It use PP instead of the ISO >IN
. It contains the full ISO CORE in the kernel, more than is needed to make it self contained. It
contains a field in the header to point to source. It is indirect threaded.

If you are new to Forth you may want to read the Gentle Introduction, otherwise you better
skip it. The third chapter most users will not be interested in.

2 Gentle introduction

A Forth system is a database of small programs. The database is called the dictionary. The
programs are called word ’s, or definitions. The explanation of words from the dictionary is
called a glossary.

First of all, a Forth system is an environment that you enter by running it:
‘wina64’
Like in a Disk Operating System a word is executed by typing its name, but unlike in a DOS
several programs can be specified on the same line, interspersed with numbers. Also names can
be anything, as long as they don’t contain spaces.

A program may leave one or more results, and the next program can use it. The latest result
is used up first, hence the name lifo buffer. (last in, first out).

For example:

()

80386 ciforth beta $RCSfile: ci86.gnr,v $ $Revision: 6.122 $

1 2+ 7 %
OK

21 OK
-

1 2 and 7 are numbers and are just remembered as they are typed in. ‘0K’ and ‘21 0K’ are
the answer of the computer. + is a small program with an appropriate name. It adds the two
numbers that were entered the latest, in this case 1 and 2. The result 3 remains, but 1 and 2
are consumed. Note that a name can be anything, as long as it doesn’t contain spaces. The
program * multiplies the 3 and the 7 and the result is 21. The program . prints this results. It
could have been put on the same line equally easily.

You will be curious about what are all those commands available. Of course they are docu-
mented, but you can find the exact set by typing WORDS . Programs can be added to the database
by special programs: the so called defining word ’s. A defining word generally gets the name of
the new word from the input line.

For example: a constant is just a program that leaves always the same value. A constant is
created in this way, by the defining word CONSTANT :

127 CONSTANT MONKEY 12 .
12 0K

You can check that it has been added, by typing WORDS again.

The above must not be read like:
a number, two programs and again a number etc.... ,
but as:
a number, a program and a name that is consumed,
and after that life goes on. The ‘12 .’ we put there for demonstration purposes, to show that
CONSTANT reads ahead only one word. On this single line we do two things, defining ‘MONKEY’
and printing the number 12. We see that CONSTANT like any other program consumes some data,
in this case the 127 that serves as an initial value for the constant called ‘MONKEY’ .

4 ciforth manual

You may get ‘ constant ? ciforth ERROR # 12 : NOT RECOGNIZED ’. That is because you
didn’t type in the above precisely. winab4 is case sensitive. If you want to change that consult
the section "Common problems". (see Chapter 7 [Errors|, page 49).

A very important defining word is : , with its closure ; .

: TEST 1 2 + 7 % 21
21 OK

In this case not only the name ‘TEST’ is consumed, but none of the remaining numbers and
programs are executed, up till the semicolon ; . Instead they form a specification of what ‘TEST’
must do. This state, where Forth is building up a definition, is called compilation mode . After
the semicolon life continues as usual. Note that ; is a program in itself too. But it doesn’t
become part of TEST . Instead it is executed immediately. It does little more than turning off
compilation mode.

TEST TEST + .

42 0K

: TEST+1 TEST 1 + . ; TEST+1
22 OK

We see that ‘TEST’ behaves as a shorthand for the line up till the semi colon, and that in its
turn it can be used as a building block.

The colon allows the Forth programmer to add new programs easily and test them easily, by
typing them at the keyboard. It is considered bad style if a program is longer than a couple
of lines. Indeed the inventor of Forth Chuck Moore has written splendid applications with an
average program length of about one line. Cathedrals were built by laying stone upon stone,
never carved out of one rock.

The implementation of the language Forth you look at is old fashioned, but simple. You as a
user have to deal with only three parts/files : this documentation, the executable program, and
the library file, a heap of small programs in source form. There may be several documentation
files, but they contain the same information in a different format.

There is an ISO standard for Forth and this Forth doesn’t fully comply to it. Still by
restricting yourself to the definitions marked as ISO in the glossary, it is quite possible to write
an application that will run on any ISO-compliant system.

Because of the way Forth remembers numbers you can always interrupt your work and
continue. For example

: TEST-AGAIN
12+ [34=x%.]
12 0K

T *

0K

What happened here is that some one asked you to calculate “3 times 4” while you were
busy with our test example. No sweat! You switch from compilation mode to normal (interpret)
mode by [, and back by] . In the meantime, as long as you don’t leave numbers behind, you
can do anything. (This doesn’t apply to adding definitions, as you are in the process of adding
one already.)

3 Rationale & legalese

3.1 Legalese

This application currently is copyright by Albert van der Horst. This Forth is called ciforth and
is made available by the D.F.W.. This publicationis is available under GPL 2, the GNU public
license. The file COPYING containing the legal expression of these lines must accompany it.

You can make closed source program with the -c options. Such programs are naturally your
own, quite the same as programs build with the gcc compiler. However also if you base an
application program on ciforth, you need not make its source available, even if the application
contains the Forth interpreter exposed. This would be a derived work and, in a strict interpre-
tation of the GPL, such interpretive systems based on ciforth are always legally obliged to make
the source available. Because Forth is “programming by extending the language” , we consider
this “normal use in the Forth sense” as expressed by the following statement.

In addition to the GPL Albert van der Horst grants the following rights in writing;:

1. The GPL is interpreted in the sense that a system based on ciforth and intended to serve a
particular purpose, that purpose not being a “general purpose Forth system”, is considered
normal use of the compilation system, even if it could accomplish everything ciforth could,
under the condition that the ciforth it is based on is available in accordance to the GPL
rules, and this is made known to the user of the derived system.

2. Code snippets in the library inasfar not in the public domain are available under the LGPL,
so you can freely borrow from it or build on it.

3.2 Rationale

This Forth is meant to be simple. What you find here is a Forth for the Intel 86. You need just
the executable to work. You choose the format you prefer for the documentation. They all have
the same content. You can use the example file with blocks, you have the assembler source for
your Forth, but you can ignore both.

3.3 Source

In practice the GPL means (: this is an explanation and has no legal value!)
They may be further reproduced and distributed subject to the following conditions:

The three files comprising it must be kept together and in particular the reference section
with the World Wide Web sites.

The latest version of wina64 is found at
‘http://home.hccnet.nl/a.w.m.van.der.horst/ciforth.html’.

Via that link you can also download ciforth’s for other OS’s and the generic system, if you
want to make important modifications. Also you can see how you can contact the author. Oth-
erwise in case of questions about this ciforth, contact the person or organisation that generated
it for you.

This Forth builds on fig-Forth. It is based on the work of Charlie Krajewski and Thomas
Newman, Hayward, Ca. still available via taygeta. The acknowledgments for systems that serves
as a base, in particular the original fig-Forth, are found in the generic documentation, including
detailed information how these systems can be obtained.

Important:
If you just want to use a Forth, you most certainly do not want the generic system. Great
effort is expended in making sure that this manual contains all that you need, and nothing that

6 ciforth manual

might confuse you. The generic system on the contrary contains lots that you don’t need, and
is confusing as hell.

If you are interested in subjects like history of Forth, the rationale behind the design and

such you might want to read the manual for the generic Forth.

3.4 The Generic System this Forth is based on.

The source and executable of this ciforth was generated, out of at least dozens of possibilities,
by a generic system. You can configure the operating system, memory sizes, file names and
minor issues like security policy. You can select between a 16, 32 and 64 bit word size. You
may undertake more fundamental changes by adapting one or more of the macro header files.
An important goal was to generate exactly fitting documentation, that contains only relevant
information and with some care your configuration will have that too. This generic system can
be obtained via ‘http://home.hccnet.nl/a.w.m.van.der.horst/ciforth.html’.

4 Manual

4.1 Getting started

4.1.1 Hello world!

Type ‘wina64’ to get into your interactive Forth system. You will see a signon message. While
sitting in your interactive Forth doing a “hello world” is easy:

"Hello world!" TYPE
Hello world! OK

Note that the computer ends its output with ‘OK’ to indicate that it has completed the
command.
Making it into an interactively usable program is also easy:

: HELLO "Hello world!" TYPE CR ;
OK

HELLO

Hello world!

0K

This means you type the command ‘HELLO’ while you are in wina64. As soon as you leave
wina64, the new command is gone.

If you want to use the program a second time, you can put it in a file hello.frt. It just contains
the definition we typed earlier:

[: HELLO "Hello world!" TYPE CR ; J

This file can be INCLUDED in order to add the command ‘HELLO’ to your Forth environment,
like so:

"hello.frt" INCLUDED
OK

HELLO

Hello world!

OK

During development you probably have started with ‘wina64 -e’, so you need just type

[%NCLUDE hello.frt J

In order to make a stand alone program to say hello you can use that same source file, again
hello.frt. Now build the program by
wina64 -c hello.frt

8 ciforth manual

(That is ¢ for compile.) The result is a file . This file can be run from your command interpreter,
or shell. It is a single file that you can pass to some one else to run on their computer, without
the need for them to install Forth. For the compiler to run you must have the library correctly
installed.

If that failed, or anything else fails, you will get a message with at least ¢ ciforth ERROR
###’ and hopefully some more or less helpful text as well. The ‘###’ is an error number. See
Chapter 7 [Errors], page 49, Section Explanations.

Note for the old hands. Indeed the quoted strings are not ISO. They surely are a Forth-like
extension. Read up on denotations, and the definition of " .

In wina64 you never have to worry about the life time of those quoted strings, they are
allocated in the dictionary and are permanent.

4.1.2 The library.

If you want to run a program written on some other Forth, it may use facilities that are not
available in wina64’s kernel, but they may be available in the library . A library is a store with
facilities, available on demand. Forth as such doesn’t have a library mechanism, but wina64
does.

wina64 uses the blocks as a library by addition of the word WANTED and a convention. Starting
with ‘wina64 -w’ or most any option you have this facility available. If you are already in wina64,
you can type ‘1 LOAD’. The extension of ‘.1ab’ in forth.lab means Library Addressable by
Block.

Now we will add DO-DEBUG using this library mechanism. It is used immediately. It is handy
during development, after every line it shows you what numbers Forth remembers for you. Also
from now on the header of each block that is LOAD -ed is shown.

Type (‘1 LOAD’ may not be necessary):

-~
1 LOAD

"DO-DEBUG" WANTED
0K
DO-DEBUG

S[L]OK12

SL12] 0K
N

(You can turn DO-DEBUG off with NO-DEBUG .)

More convenient than WANTED is WANT that adds all words that are on the remainder of the
line, so without quotes.

If you try to INCLUDE a program, you may get errors like ‘TUCK? ciforth ERROR # 12 : NOT
RECOGNIZED’. See Chapter 7 [Errors], page 49, Section Explanations. Apparently, wina64 doesn’t
know about a forth word named TUCK , but after ‘"TUCK" WANTED’ maybe it does. You may try
again.

The convention about the way the library file must be organized for WANTED to find something
is simple. It is divided into blocks of 16 lines. The first line is the header of the block. If the
word we are looking for is mentioned in the header, that block is compiled. This continues until
the word has been defined, or the end of the search area is reached. This is marked by a screen
with an empty index line. I tell you this not because you need to know, but to show that there
is nothing to it.

Chapter 4: Manual 9

The library file contains examples for you to load using WANT . Try

-
WANT SIEVE

LIM # 4 ISN’T UNIQUE

OK

10 SIEVE

KEY FOR NEXT SCREEN

ERATOSTHENES SIEVE -- PRIMES LESS THAN 10 000
0 002 003 ...

(lots of prime numbers.)
- J

4.1.3 Development.

If you want to try things out, or write a program — as opposed to just running a ready made
program — you best start up wina64 by ‘wina64 -e’. That is e for elective. ‘wina64 -e’ instructs
wina64 to load screen 5 (e is the 5-th letter.)

You can configure this screen 5 to suit your particular needs, by just using some programmers
editor. We will come back to that later.
You will have available:

1. WANTED and WANT . ‘WANT xxx yyy’ is equivalent to ‘"xxx" WANTED "yyy" WANTED’ , but it is
more convenient.

2. DH. H. B. DUMP FARDUMP
For showing numbers in hex and parts of memory.

3. SEE
To analyse words, showing the source code of compiled words. (Also known as CRACK .)

4. LOCATE
To show the part of the source file where the word is defined, or, if loaded from the library
file, the block where it is defined.

5. 0S-IMPORT

Because this ciforth is “hosted”, meaning that it is started from an operating system, you
can develop in a convenient way. Start wina64 in a window, and use a separate window to
start your editor. Try out things in wina64. If they work, paste the code into your editor. If
a word works, but its source has scrolled off the screen, you can recover the source using SEE
. If you have constructed a part or all of your program, you can save it from your editor to a
file. Then by the command ‘INCLUDE <file-name> ’ load the program in wina64 and do some
further testing.

You are not obliged to work with separate windows. Suppose your favorite editor is called .
After

you can start editing a file in the same way as from . Of course you now have to switch
between editing a file and wina64. But at least you need not set up your Forth again, until your
testing causes your Forth to crash.

4.1.4 Finding things out.

If you want to find things out you must start up wina64 again by ‘wina64 -e’. The sequence

10 ciforth manual

WANT TUCK
LOCATE TUCK

shows you the source for TUCK if it is in the library somewhere.

WANT TUCK
SEE TUCK

show you the source for TUCK if it is in the library or in the kernel, but without comment
or usage information.

4.2 Configuring

For configuring your wina64, you may use "newforth" SAVE-SYSTEM . This will do most of the
time, but then you build in the SAVE-SYSTEM command as well. For configuring your wina64,
without enlarging the dictionary, you may use the following sequence

(A
S" myforth.lab" BLOCK-FILE $! \ Or any configuration command

1 LOAD

WANT SAVE-SYSTEM

: DOIT
’_pad ’FORTH FORGET-VOC
’_pad >NFA @ DP !
"newforth" SAVE-SYSTEM BYE ;

DOIT

N

J

Here ‘DOIT’ trims the dictionary just before saving your system into a file. _pad is the first
word of the facilities in screen 1 that was loaded. (This was different in previous version of
ciforth.)

FAR-DP allows to have a disposable part of the dictionary. If you decide to use this facility
for your own purposes, make sure to always FORGET the disposed off words. The ‘-c¢’ option uses
this to avoid having source files as part of an executable image.

4.3 Concepts

A forth user is well aware of how the memory of his computer is organised. He allocates it for
certain purposes, and frees it again at will.

The last-in first-out buffer that remembers data for us is called the data stack or sometimes
computation stack . There are other stacks around, but if there is no confusion it is often called
just the stack . Every stack is in fact a buffer and needs also a stack pointer to keep track of
how far it has been filled. It is just the address where the last data item has been stored in the
buffer.

The dictionary is the part of the memory where the word’s are (see Section 9.6 [DICTIO-
NARY], page 78). Each word owns a part of the dictionary, starting with its name and ending
where the name of the next word starts. This structure is called a dictionary entry . Its ad-
dress is called a dictionary entry address or DEA . In ciforth’s this address is used for external
reference in a consistent way. For example it is used as the execution token of a word in the
ISO sense. In building a word the boundary between the dictionary and the free space shifts up.
This process is called allocating , and the boundary is marked by a dictionary pointer called DP
. A word can be executed by typing its name. Each word in the dictionary belongs to precisely
one word list , or as we will say here namespace. Apart from the name, a word contains data and
executable code, (interpreted or not) and linking information (see Section 9.4.7 [NAMESPACE],

Chapter 4: Manual 11

page 73). The order of words in a wordlist is important for looking them up. The most recent
words are found first.

The concept word list is part of the ISO standard, but we will use namespace . A namespace
is much more convenient, being a word list with a name, created by NAMESPACE . ISO merely
knows word list identifier ’s, a kind of handle, abbreviated as WID . A new word list is created
by the use of NAMESPACE . When looking up a word, only the wordslists that are in the current
search order are found. By executing the namespace word the associated word list is pushed
to the front of the search order. In fact in ciforth’s every DEA can serve as a WID. It defines
a wordlist consisting of itself and all earlier words in the same namespace. You can derive the
WID from the DEA of a namespace by >WID .

A word that is defined using : is often called a colon definition . Its code is called high level
code.

A high level word, one defined by : , is little more than a sequence of addresses of other
words. The inner interpreter takes care to execute these words in order. It acts by fetching
the address pointed by ‘HIP’ | storing this value in register ‘WOR’. It then jumps to the address
pointed to by the address pointed to by ‘WOR’. ‘WOR’ points to the code field of a definition which
(at offset forthdef(>CFA)) contains the address of the code which executes for that definition.
For speed reasons this offset is choosen to be zero. This usage of indirect threaded code is a
major contributor to the power, portability, and extensibility of Forth.

If the inner interpreter must execute another high level word, while it is interpreting, it must
remember the old value of ‘HIP’, and this so called nesting can go several levels deep. Keeping
this on the data stack would interfere with the data the words are expecting, so they are kept
on a separate stack, the return stack . Apart from ‘HIP’ and ‘WOR’ the return and data stack
are kept in registers named ‘RP0’ and ‘SPQ’. If you’re interested in the actual registers, you can
inspect the assembler source file that goes with this Forth. The usage of two stacks is another
hall mark of Forth.

A word that generates a new entry in the dictionary is called a defining word (see Section 9.4
[DEFINING], page 72). The new word is created in the CURRENT word list .

Each processor has a natural size for the information. (This is sometimes called a machine
word). For a Pentium processor this is 32 or 64 bit, for the older Intel 8086 it is 16 bit. The
pendant in Forth is called a cell and its size may deviate from the processor you are running
on. For this ciforth it is 64 , It applies to the data remembered in the data stack, the return
addresses on the return stack, memory accesses @ and ! , the size of VARIABLE ’ s and CONSTANT
’s. In Forth a cell has no hair. It is interpreted by you as a signed integer, a bit-map, a memory
address or an unsigned number. The operator + can be used to add numbers, to set a bit in a
bitmap or advance a pointer a couple of bytes. In accordance with this there are no errors such
as overflow given.

Sometimes we use data of two cells, a double . The high-order cell is most accessible on the
stack and if stored in memory, it is lowest.

The code for a high level word can be typed in from the terminal, but it can also fed into
Forth by redirection from a file, INCLUDED from a file or you can load it from the file forth.lab,
because you can load a piece of this library at will once you know the block number. This file is
divided into blocks of 1 Kbyte. They may contain any data, but a most important application
is containing source code. A block contain source code is called a screen . It consists of 16 lines
of 64 characters. In ciforth the 64-th character is ~J such that they may be edited in a normal
way with some editors. To load such a screen has the same effect as typing its content from the
terminal. The extension lab stands for Library Addressable by Block ,

Traditionally Forthers have things called number ’s, words that are present in the source be it
interpreted or compiled, and are thought of not as being executed but rather being a description
of something to be put on the stack directly. In early implementations the word ‘NUMBER’ was a

12 ciforth manual

catch-all for anything not found in the dictionary, and could be adapted to the application. For
such an extensible language as Forth, and in particular where strings and floating point numbers
play an increasing role, numbers must be generalised to the concept of denotation ’s. The need
for a way to catch those is as present as it was in those early days. Denotations put a constant
object on the stack without the need to define it first. Naturally they look, and in fact are, the
same in both modes. Here we adopt a practice of selecting a type of the denotations based on
the first letters, using PREFIX . This is quite practical and familiar. Examples of this are (some
from C, some from assemblers, some from this Forth) :

(A
10

J a)

"A

ODEAD
$8000403A
0x8000403A
#3487

0177

S" Arpeggio"
"JAMES BROWN IS DEAD"
n JK n

’DROP

> DROP
. J

These examples demonstrate that a denotation may contain spaces, and still are easy to scan.
And yes, I insist that > DROP’ is a denotation. But ‘’DROP’ is clearer, because it can only be
interpreted as such; it is not a valid word.

Of course a sensible programmer will not define a word that looks like a denotation :

[: 7 CR "This must be my lucky day" TYPE ; (DON’T DO THIS) }

4.4 Portability

If you build your words from the words defined in the ISO standard, and are otherwise careful,
your programs may run on other systems that are ISO standard.

There are no gratuitous deviations from the standard, but a few things are not quite con-
forming,.

1. The error system uses CATCH and THROW in a conforming way. However the codes are not
assigned according to the table in the standard. Instead positive numbers are ciforth errors
and documented in this manual. ciforth’s errors identify a problem more precisely than
the standard admits. An error condition that is not detected has no number assigned to
it. Negative numbers are identical to the numbers used by the host operating system. No
attempt is made to do better than reproduce the messages belonging to the number

2. As ABORT" ABORT QUIT are not implemented using THROW it is not possible to catch those
words.

3. There is no REFILL . This is a matter of philosophy in the background. You may not notice
it.

Consequences are that BLK is not inspected for every word interpreted, but that blocks in
use are locked. Files are not read line by line, but read in full and evaluated.

Chapter 4: Manual 13

4. It uses PP instead of the ISO >IN

The >IN that is available via the library is a fake, that can only be read, but changing it
has no effect. PP can be manipulated to have such effects as the familiar 0 >IN ! idiom.

5. Counting in do loops do not wrap through the boundary between negative and positive
numbers. This is not useful on Forths of 32 bits and higher; for compatibility among
ciforths 16 bit ciforths don’t wrap either.

6. Namespaces are wordlists with a name. They push the wordlist to the search order, instead
of replacing the topmost one, as is done by VOCABULARY (not an ISO-word) that is
present in some other Forth’s. In this sense FORTH and ASSEMBLER words are not conforming.

7. This is not strictly non-conforming, but worth mentioning here. In fact wina64 contains only
one state-smart word besides LITERAL (that word is ."). All denotations are state-smart
only because they use LITERAL

and the result is correct ISO behaviour for numbers. Knowledge of this is used freely in
the libraries of ciforth; it is the right of a system developer to do so. The library is not
a supposedly ISO-conforming program. It tends to rely on ciforth-specific and wina64-
specific — but hopefully documented — behaviour. Understanding it requires some study of
non-portable facilities.

8. When a file is INCLUDED it is read in as a whole, so there is never a need for REFILL . After
WANT REFILL a REFILL is loaded that sets the parse pointer to the start of the next line. In
nearly all cases this will accomplish the effect described by the standard.

Here we will explain how you must read the glossary of wina64, in relation to terminology in

the ISO standard.

Whenever the glossary specifies under which conditions a word may crash , then you will see
the euphemism ambiguous condition in the ISO standard.

For example:
Using HOLD other than between <# and #> leads to a crash.

Whenever we explicitly mention ciforth in a sentence that appears in a glossary entry, the
behaviour may not apply to other ISO standard systems. This is called ciforth specific behaviour
. If it mentions “this ciforth” or “wina64”, you cannot even trust that behaviour to be the same
on other ciforth systems. Often this is called an “implementation defined” behaviour in the
standard. A typical example is the size of a cell. Indeed we are obliged to specify this behaviour
in our glossary, or we don’t comply to the standard. The behaviour of the other system may
very well be a crash. In that case the standard probably declares this an “ambiguous condition”.

For example:
On this ciforth OUT is set to zero whenever CR is executed.

The bottom line is that you never want to write code where wina64 may crash. And that
if you want your code to run on some other system, you do not want to rely on ciforth specific
behaviour . If you couldn’t get around that, you must keep the specific code separate. That
part has to be checked carefully against the documentation of any other system, where you want
your code to run on.

By using CELL+ it is easy to keep your code 16/32/64 bit clean. This means that it runs on
16, 32 and 64 bits systems.

4.5 Compatibility with wina64 4.0.x

Since version 5.x changes have been made to increase compatibility with existing practice. By
invoking WANT -legacy- you load a screen that forces compatibility with 4.x.x versions. You
will notice that existing programs either invoke this, or have been reworked to not need legacy
items. In either case, those programs have been tested with version 5.x

14 ciforth manual

What the legacy items are can be seen from the screen that has -legacy- in its in-
dex line. In particular REQUIRE REQUIRED PRESENT? VOCABULARY WORD FIND (WORD) (PARSE)
SAVE-INPUT RESTORE-INPUT WORD FIND (WORD) (PARSE) SAVE-INPUT RESTORE-
INPUT are to be found in those screens. Note that by using legacy items your code may
be in conflict with upcoming standards.

The names VOCABULARY and REQUIRE are being proposed for standardisation. The ciforth
definitions with these names were not compatible with this proposal. So the REQUIRE of older
versions is now called WANT . Likewise REQUIRED is renamed to WANTED . VOCABULARY is renamed
to NAMESPACE , with the difference that NAMESPACE is not immediate. This allows to include the

new standardised definitions in a loadable screen.

4.6 Saving a new system

We have said it before: “Programming Forth is extending the Forth language.”. A facility to
save your system after it has been extended is essential. It can be argued that if you don’t have
that, you ain’t have no Forth. It is used for two purposes, that are in fact the same. Make a
customised Forth, like you want to have it. Make a customised environment, like a customer
wants to have it. Such a “customised environment”, for example a game, is often called a turnkey
system in Forth parlance. It hides the normal working of the underlying Forth.

In fact this is what in other languages would be called “just compiling”, but compiling in
Forth means adding definitions to an interactive Forth. In ciforth “just compiling” is as easy as
in any language (see Chapter 4 [Manual], page 7, Hello world!). Of course, whether you have
a hosted system or a booted system , it is clear that some system-dependant information goes
into accomplishing this.

This has all been sorted out for you. Just use SAVE-SYSTEM . This accepts a string, the
name you want the program-file to have. Having a program to execute a certain word is even
easier,just use the ‘-c’ option. See Chapter 4 [Manual|, page 7, Section Libraries and options.

In the following it is explained. We use the naming convention of ISO about cells. A cell is
the fundamental unit of storage for the Forth engine. Here it is 64 bits (8 bytes).

The change of the boot-up parameters at +ORIGIN , in combination with storing an image
on disk goes a long way to extending the system. This proceeds as follows:

1. All user variables are saved by copying them from ‘U0 @ to ‘O +ORIGIN’. The user variable
U0 points to the start of the user area. The length of the area is 0x40 cells. If in doubt
check out the variable ‘US’ in the assembler code.

2. If all user variables are to be initialised to what they are in this live system skip the next
step.

3. Adjust any variables to what you want them to be in the saved system in the +ORIGIN area.
The initialisation for user variable ‘Q’ can be found at ‘> Q >DFA @ +ORIGIN’.

4. Adjust version information (if needed)

5. Copy your wina64 to a new file using PUT-FILE . The difficult part is to add to the
system specific header information about the new size, which is now from BM to HERE .
The command ‘WANT SAVE-SYSTEM’ loads a version that does that correctly for your hosted
system.

4.7 Memory organization

A running ciforth has 3 distinct memory areas.
They occur sequentially from low memory to high.

e The dictionary

Chapter 4: Manual 15

e Free memory, available for dictionary, from below, and stacks, from above
e Stacks and the input buffer for the console and disk block buffers .

The lowest part of the free memory is used as a scratch area: PAD .
The dictionary area is the only part that is initialised, the other parts are just allocated.

The program as residing on disk must contain the first area. In addition it contains a header,
to tell the MS-Windows how to transfer the program to memory. Logically the Forth system
consists of these 7 parts.

e Boot-up parameters

e Machine code definitions

e Installation dependant code

e High level standard definitions
e High level user definitions

e System tools (optional)

e RAM memory workspace

4.7.1 Boot-up Parameters

The boot-up area contains initial values for the registers needed for the Forth engine, like stack
pointers, the pointers to the special memory area’s, and the very important dictionary pointer
DP that determines the boundary between the dictionary and free space.

They are copied to a separate area the user area , each time Forth is started. The bootup
area itself is not changed, but the variables in the user area are. By having several user area’s,
and switching between them, ciforth supports multitasking. When you have made extensions
to your system, like for instance you have loaded an editor, you can make these permanent
by updating the initial values in the boot-area and saving the result to disk as an executable
program. The boot-up parameters extend from ‘0 +ORIGIN’ and supply an initial value for all
of the user area. This is the image for the user area .

In ciforth the bootup parameters are more or less the data area belonging to the +ORIGIN
word. Executing ‘O +0RIGIN’ leaves a pointer in this area.

4.7.2 Installation Dependent Code
KEY EMIT KEY? TYPE
CR BLOCK-READ and BLOCK-WRITE

are indeed different for different I/O models. This is of little concern to you as a user,
because these are perfectly normal dictionary entries and the different implementations serves
to make them behave similarly. There will however be more differences between the different
configurations for ciforth for these words than habitually. These definitions are often revectored
especially those for output. Output is revectored using TYPE . In other Forth’s this is mostly
done via KEY and CR separately.

4.7.3 Machine Code Definitions

The machine executable code definitions play an important role because they convert your
computer into a standard Forth stack computer. It is clear that although you can define words
by other words, you will hit a lowest level. The code word ’s as these lowest level programs are
called, execute machine code directly, if you invoke them from the terminal or from some other
definition. The other definitions, called high level code, ultimately execute a sequence of the
machine executable code words. The Forth inner interpreter takes care that these code words
are executed in turn.

16 ciforth manual

In the assembler source (if you care to look at it) you will see that they are interspersed with
the high level Forth definitions. In fact it is quite common to decide to rewrite a code definition
in high level Forth, or the other way around. The Library Addressable by Block contains an
assembler, to add code definitions that will blend in like they were written in the kernel. Such
definitions are to be closely matched with your particular ciforth, and you must be aware which
registers play which role in ciforth. This is documented in the assembler source of this ciforth
that accompanies this distribution. Of course it is also a rich source of examples how to make
assembler definitions.

It bears repeating: code words are perfectly normal dictionary entries.

Note: if you want to change this ciforth’s assembler source to fit your needs, follow the
instructions present in the source, assembling as well as linking instructions.

4.7.4 High-level Standard Definitions

The high level standard definitions add all the colon-definitions, user variables, constants, and
variables that must be available in a "Forth stack computer" according to the ISO standard.
They comprise the bulk of the system, enabling you to execute and compile from the terminal,
execute and load code from disk to add definitions etc. Changes here may result in deviations
from the standard, so you probably want to leave this area alone. The technique described for
the next section, forget and recompile, is not always possible here because of circular references.
That is in fact no problem with an assembler listing, but it is if you load Forth code.

Again standard definitions words are perfectly normal dictionary entries.

4.7.5 User definitions

The user definitions contain primarily definitions involving user interaction: compiling aids,
finding, forgetting, listing, and number formatting. Some of these are fixed by the ISO standard
too. In ciforth most of those facilitities are not available in the kernel, but from the library. This
applies even to the ISO standard words from the ‘TOOLS’ wordset like DUMP (show a memory
area as numbers and text) and .S (show the data stack). You can FORGET part of the high-level
and re-compile altered definitions from disc. Mostly this is a mistake, and to make sure you
mean it, you must change FENCE to defeat a protection mechanism.

A number of entries that could easily be made loadable are integrated in the assembler source
of this ciforth version. Instead of forgetting them, you can load your own version on top of the
existing system and waste some space.

Again user definitions words are perfectly normal dictionary entries.

4.7.6 System Tools

The boundary between categories are vague. A system tools is contrary to a user tool, a larger
set of cooperating words. A text editor and machine code assembler are the first tools normally
available. In ciforth those facilities are mostly not available in the kernel, but from the library.
For example, an assembler is not part of he kernel as delivered, but it is available after ‘WANT
ASSEMBLERi86’. Beware! The assembler can only be loaded on top of a CASE-SENSITIVE system.

You can load a more elaborate assembler. See Chapter 5 [Assembler]|, page 23, Section Over-
view. They are among the first candidates to be integrated into your system by SAVE-SYSTEM

See Chapter 4 [Manual|, page 7, Section Getting Started.
In an installed system you will put ‘WANT 0S-IMPORT WANT INCLUDE’ in your electives screen (5),
and just type ‘vim mysrc.frt’ to edit a file, without leaving wina64 and load it with ‘INCLUDE
mysrc.frt’

Chapter 4: Manual 17

A Pentium 32 and a 8086 Forth assembler are available in forth.lab. They are loaded in
accordance with the system that is run. The registers used by wina64 are called HIP, SPO,
RPO and WOR. The mapping on actual processor registers is documented in the source.

It is essential that you regard wina64 as just a way to get started with Forth. Forth is an
extensible language, and you can set it to your hand. But that also means that you must not
hesitate to throw away parts of the system you don’t like, and rebuilt them even in conflict with
standards. Additions and changes must be planned and tested at the usual Forth high level.
Some words criticial for speed you can later rewrite as code words. Some words are easier to
write in code right away.

Again words belonging to tools are perfectly normal dictionary entries.

4.7.7 RAM Workspace

The RAM workspace contains the compilation space for the dictionary, disc buffers, the com-
putation and return stacks, the user area, and the console input buffer, From the fig-Forth user
manual

For a single user system, at least 2k bytes must be available above the compiled
system (the dictionary). A 16k byte total system is most typical.

It is indeed possible to do useful work, like factoring numbers of a few hundred digits,
in a workspace of 2k bytes. More typical a workspace is several megabytes to over hundred
megabytes.

32 and 64 bits system are set at 64Mbyte but this is arbitrary and could be set much higher or
lower without consequences for system load or whatever. Before long we will put the dictionary
space on 32-bits Linux to 4G minus something and forget about this issue forever.

The boundary between this area and the previous ones is pretty sharp, it is where DP points.
The other areas are more of a logical distinction. But even this boundary constantly changes as
you add and forget definitions. Multi-tasking requires allocation of extra areas. See Chapter 4
[Manual], page 7, Section Details of memory layout.

4.8 Specific layouts

4.8.1 The layout of a dictionary entry

We will divide the dictionary in entries. A dictionary entry is a part of the dictionary that
belongs to a specific word. A dictionary entry address , abbreviated DEA is a pointer to the
header of a dictionary entry. In ciforth a header extends from the lowest address of the entry,
where the code field is, to the past header address , just after the last field address. A dictionary
entry apart from the header owns a part of the dictionary space that can extend before the header
(mostly the name of the entry) and after it (mostly data and code).

A dictionary entry has fields, and the addresses of fields directly offset from the dictionary
entry address, are called field address . This is a bit strange terminology, but it makes a
distinction between those addresses and other addresses. For example, this allows to make the
distinction between a data field address , that is always present, and a data field in the ISO
sense that has only a (differing) meaning for CREATE DOES> definitions. Typically, a field address
contains a pointer. A data field address contains a pointer to near the data field , whenever the
latter exists.

They go from lowest in memory to highest:

1. The code field. This is one cell. A pointer to such a field is called a code field address . It
contains the address of the code to be executed for this word.

2. The data field, of the DEA, not in the ISO sense. This is one cell. A pointer to such a field
is called a data field address . It contains a pointer to an area owned by this definition.

18 ciforth manual

3. The flag field. This is one cell. A pointer to such a field is called a flag field address . For
the meaning of the bits of the flag field sea below.

4. The link field. This is one cell. A pointer to such a field is called a link field address . It
contains the dictionary entry address of the last word that was defined in the same word
list before this one.

5. The name field. This is one cell. This contains a pointer to a string. A pointer to such
a field is called a name field address . The name itself is stored outside of the dictionary
header in a regular string, i.e. a one cell count followed by as many characters, then padding
for alignment. Unfortunately, name token is used in other Forth’s to indicate a base to find
other fields, what we call a dictionary entry address

This came about because the name is lowest in memory. In this Forth the code field address
and the dictionary address happens to be the same. This has a small advantage in next ,
it needs no offset.

6. The source field. This is one cell. This can be used to hold a reference to the source, a
block number or a pointer to a string. For kernel words it stays at zero.

7. Past the header . This is actually not a field, but the free roaming dictionary. However,
most of the time the part of the dictionary space owned by a dictionary entry starts here. A
pointer to such a field is called a past header address address . Mostly a data field address
contains a pointer to just this address.

The entries are not only in alphabetic order, they are in order of essentiality. They are
accessed by >CFA >DFA >FFA >LFA >NFA >SFA . (CREATE) takes care to generate the dictionary
entry data structure; it is called by all defining words.

Note that data field has a specific meaning in the ISO standard. It is accessed through
>BODY from the execution token while a data field address is accessed through >DFA from the
dictionary entry address . It is in fact one cell behind where the data field address pointer points
to. Furthermore only particular words have data fields, those defined by CREATE .

The flag bits used in the kernel are:
e The INVISIBLE bit = 1 when smudge d; this will prevent a match by (FIND) .
e The IMMEDIATE bit = 1 for IMMEDIATE definitions; it is called the immediate bit .

e The DUMMY bit = 1 for a dictionary header contained in the data of a namespace; this
indicates that it should not be executed.

e The DENOTATION bit = 1 for a prefix word. This means that it is a short word used as
a prefix that can parse all denotation ’s (numbers) that start with that prefix, e.g. 7 or &
. Usually it is a one character word, but not necessarily. All built-in prefix words are part
of the minimum search order and are one character.

After the last letter of a name follow zero bytes up till the next cell boundary. The code
field of all colon definition ’s contains a pointer to the same code, the inner interpreter , called
‘DOCOL’. For all words defined via ‘CREATE ... DOES>’ the code field contains the same code,
‘DODOES’. On the other hand all code definitions (those written in assembler code) have different
code fields.

At the data field address we find a pointer to an area with a length and content that depends
on the type of the word.
e For a code word, it contains the same pointer as in the code field.
e For a word defined by CONSTANT , VARIABLE , USER , or DATA it has a width of one cell, and

contains data. For VARIABLE it is a pointer to a cell, for DATA it is a pointer to a memory
area of varying length.

e For all colon definition ’s the data field address contains a pointer to an area of varying
length. It contains the compiled high level code, a sequence of dea ’s.

Chapter 4: Manual 19

e For a word defined via ‘CREATE ... DOES>’ the first cell of this area contains a pointer to
the high level code defined by DOES> and the remainder is data. A pointer to the data is
passed to this DOES> code.

The wordset ‘DICTIONARY’ contains words for turning a dictionary entry address into any of
these fields. They customarily start with >.

In summary, a dictionary falls apart into
1. Headers, with their fields.
2. Names, pointed to by some name field address .

3. Data, pointed to by some data field address . This includes high level code, that is merely
data fed into the high level interpreter.

4. Code, pointed to by some code field address . This is directly executable machine code.

4.8.2 Details of memory layout

The disc buffers are mainly needed for source code that is fetched from disk were it resides in a
file.

The disc buffer area is at the upper bound of RAM memory, So it ends at EM .

It is comprised of an integral number of buffers, each B/BUF bytes plus two cells. B/BUF is the
number of bytes read from the disc in one go, originally thought of as one sector. In ciforth’s
B/BUF is always the size of one screen according to ISO : 1024 bytes. The constant _FIRST has
the value of the address of the start of the first buffer. _LIMIT has the value of the first address
beyond the top buffer. The distance between _FIRST and _LIMIT is a multiple of B/BUF bytes
plus two cells.

For this ciforth the number of disk buffers is configured at 8 . The minimum possible is
approximately 8 because nesting and locking requires that much blocks available at the same
time.

The user area is configured to contain 0x40 cells, MAX-USER

contains the size of the area that is in use, in bytes. User variables can be added by the word
USER , but you have to keep track yourself which offset in the user area can be used. Updating
MAX-USER is recommended. The user area is just under the disc buffers. So it ends at _FIRST .

The console input buffer and the return stack share an area configured at a size of 0x10000
bytes. The lower half is intended for the console input buffer, and the higher part is used for
the return stack, growing down from the end. The initial stack pointer is in variable RO . The
return stack grows downward from the user area toward the terminal buffer.

The computation stack grows downward from the terminal buffer toward the dictionary which
grows upward. The initial stack pointer is in variable SO .

During a cold start, the user variables are initialised from the bootup parameters to contain
the addresses of the above memory assignments.

They can be changed. See Section 9.12.1 [+ORIGIN], page 96, for the bootup area. But take
care. You probably need to study the source for how and when they take effect.

In multi-tasking a separate user area is allocated for each task, as well as a separate return
stack area and a separate data stack area. A task that asks for input, also needs an extra
console input buffer. A task is set up by allocating another area for all four. For task switching,
it suffices to switch both stack pointers and the pointer to the user area. In this Forth the user
area is moved during startup, such that it has a round address. This makes it possible to derive
the user base pointer from the return stack pointer on the fly and handle one less register during
task switching.

20 ciforth manual

4.8.3 Terminal I/0O and vectoring.

It is useful to be able to change the behaviour of I/O words such that they put their output to
a different channel. For instance they must output to the printer instead of to the console. In
general this is called vectoring . Remember that in normal Forth system, all printing of numbers
is to the terminal, not to a file or even a buffer.

For this reason character output CR , EMIT and TYPE all go through a common word that
can be changed. . Because this is defined in high level code it can temporarily be replaced by
other code. This revectoring is possible for all high level words in ciforth, such that we need no
special measures to make vectoring possible. As an example we replace TYPE by MYTYPE .

‘> MYTYPE >DFA @ ’ TYPE >DFA !’

And back to default:

‘> TYPE >PHA ’> TYPE >DFA !’

Be careful not to define MYTYPE in terms of TYPE , as a recursive tangle will result. This method
works in all versions of ciforth and is called revectoring .

A similar technique is not so useful on the input side, because keys entered during ACCEPT
are subject to correction until <KRET> has been pressed.

4.9 Libraries and options

In ciforth there is no notion of object (i.e. compiled) libraries, only of source libraries. A Forth
library is a block file adorned with one convention. This is that the words defined in a screen
are mentioned on the first line of that screen, the index Iline . This is of course quite established
as a habit. The word WANTED takes a string and loads the first screen where that name occurs in
the index line. For convenience also WANT is there that looks ahead in the input stream. These
words are not in the kernel but are present in screen 1, that corresponds to the ‘-a’ option.

Screen 0 and screen 1 to 31 are reserved for options, some of which are available to be filled
in by the user.

When a Forth is started up with a first parameter that is a one-letter option, the correspond-
ing screen is to be executed. So ‘-a’ or ‘-A’ is equivalent to ‘1 LOAD’ and ‘-z’ or ‘-Z’ is equivalent
to ‘26 LOAD’. In fact all options are mapped onto screen 0..31 by a bitwise and.

4.9.1 Options

ciforth is a primitive system, and can interpret just one option on the command line. If the first
argument is not starting with - ciforth returns with error code 3. However the option ‘-1’ can
bootstrap it into more sophisticated behaviour.

The following options can be passed to wina64 on the command line:
e ‘-a

Make sure WANTED is available. This is a copy of the ‘-w’ command because it is easier to
remember ‘1 LOAD’ if the screen must be loaded manually. In addition the signon message
is suppressed.

e ‘—c name’

Compile the file name to an executable binary. If name ends in ‘.frt’ it is ommitted to
arrive at the name of the binary, otherwise the binary is called a.out. Upon invocation
of the binary the word defined latest is executed, then Forth goes BYE . name is a regular
source file, not a block file. In addition WANT and ARG]I] are made available.

e ‘—d name ’ Include name with [DEFINED] available. This file can be made to load onto other
Forths without modifications.

Chapter 4: Manual 21

o ‘—¢’

Load the elective screen, screen 5. This contains preferences , the tools you want to have
available running an interactive Forth. The default library file contains system wide default
preferences. See the ‘-1’ option if the default preferences don’t suite you. In an elective
screen you just put commands to load or execute at startup of an interactive session, such
as ¢ "fortune -f /usr/lib/forthcookies" SYSTEM ’or ‘ WANT EDIT’

e ‘—f forthcode’

Execute the ‘forthcode’ in the order present. Beware of the special characters in the shell.
Also the shell will collapse multiple spaces into one.

e ‘—g number name’

Expand the system by ‘number’ Megabytes, then save it under the name ‘name’. ‘number’
may be negative, and in that case the system is made smaller.

o ‘-h
Print overview of options.

e ‘-i binpath libpath [shellpath]’
Install the forth in ‘binpath’ and the library in ‘1ibpath’ . If the ‘shellpath’ parameter is
specified, it will be installed as the command interpreter used for SYSTEM . All of them must

be full path names, not just directories. The ciforth that is running is copied to binpath,
and the block file is copied to 1ibpath.

e ‘-1 name [more]’

Use a library ‘name’. Restart Forth with as a block file name and as options the remainder
of the line shifted, such that ‘-1 name’ disappears and the next option becomes the first.
A file specified via ‘-1’ is opened for reading and writing. Options ara again handled as
described in the beginning of this section. In this way options may be added or reconfigured
for personal use.

Note that the default file is opened for reading only.

3)

¢ p
Reserved option, not implemented.
Be pedantic about ISO. Redefine some words to follow the standard as closely as possible.

3)

e q
Be quiet, don’t give a startup message.

e ‘-t sourcefile’

Try to load the file script automatically, by possibly unsafe means. Report facilities that
were required. This is a first step in a porting activity. Redefinition messages are issued on
the error channel that can be redirected to /dev/nul leaving the report.

o ‘—v’

Print version and copy right information.

4)

o ‘-y
Make sure WANTED is available.
° 4_?7

Give help, made to act the same as ‘-h’. The trimming makes that this is mapped to screen
31.

The remaining screens are available for options to be added at a later time, or for user defined
options in a private library.

22 ciforth manual

4.9.2 Private libraries

Working with source in files is quite comfortable using the default block library, especially if
sufficient tools have been added to it. In principle all ISO words should be made available via
WANTED .

In order to customize the forth library, you have to make a copy , preferably to a lib subdi-
rectory. Then you can start up using a ‘-1’ option. You can also use the ‘i’ option to make
a customized wina64 in your project directory. See Chapter 4 [Manual], page 7, Subsection
Configuring.

Note that the ‘-1’ option hides itself, such that such an alias can be used completely identical
to the original with respect to all options, including ‘-1’. Analysing arguments passed to wina64
in your programs can remain the same.

4.9.3 Turnkey applications.

Turnkey application are made using the word TURNKEY . They take a word, that is to be done,
and a string with the file name. A turnkey application should decide what to do with the library
file that is default opened in COLD . Make sure to CATCH errors from BLOCK-EXIT and ignore
them.

Mostly it is much easier to just use the ‘=c’ option. See Chapter 4 [Manuall], page 7, Getting
Started Subsection Hello World!

23

5 Assembler

The assembler is described in this manual, because it is not feasable to use it from the description
in the source. This chapter is about the assembler itself, not about how it is used in relation
with ciforth.

5.1 Introduction

Via ‘http://home.hccnet.nl/a.w.m.van.der.horst/forthassembler.html’ you can find a
couple of assemblers, to complement the generic ciforth system. The assemblers are not part of
the winab4 package, and must be fetched separately.

They are based on the postit/fixup principle, an original and novel design to accommodate
reverse engineering. The assembler that is present in the blocks, is code compatible, but is less
sophisticated, especially regards error detection. This assembler is automatically loaded in its
16 or a 32 bit form, such that it is appropriate for adding small code definitions to the system
at hand. The background information given here applies equally to that assembler.

A useful technique is to develop code using the full assembler. Then with code that at least
contains valid instruction enter the debugging phase with the assembler from the library.

There is no assembler yet for 64 bit lina. The assembler in forth.lab is useable for instructions
that do not require a prefix. Furthermore the REX, instruction that makes the operand size
64 bits is provided, plus a 64 bit version of NEXT, . These additions are sufficient to make
the floating point library assemble under 64 bits as floating point instructions do not require a
prefix, nor does the instruction 1EA, .

The following files comprise the great assembler.
ass.frt : the 80-line 8086 assembler (no error detection), a prototype.
as6809s.frt : a small 6809 assembler (no error detection).
asgen.frt : generic part of postit/fixup assembler
as80.frt : 8080 assembler, requires asgen.frt
asi86.frt : 8086 assembler, requires asgen.frt
asi386.frt : 80386 assembler, requires asgen.frt
aspentium.frt : general Pentium non-386 instructions, requires asgen.frt
asalpha.frt : DEC Alpha assembler, requires asgen.frt
asi6809.frt : 6809 assembler, requires asgen.frt
ps.frt : generate opcode sheets
p0.asi386.ps : first byte opcode for asi386 assembler
pOF.asi386.ps : two byte opcode for same that start with OF.
test.mak : makefile, i.e. with targets for opcode sheets.

The relevant assembler present in
but without error detection.

The asi386.frt (containing the full 80386 instruction set) is in many respects non-compliant
to Intel syntax. The instruction mnemonics are redesigned in behalf of reverse engineering.
There is a one to one correspondence between mnemonics and machine instructions. In princi-
ple this would require a monumental amount of documentation, comparable to parts of Intel’s
architecture manuals. Not to mention the amount of work to check this. I circumvent this.
Opcode sheets for this assembler are generated by tools automatically, and you can ask inter-
actively how a particular instructions can be completed. This is a viable alternative to using
manuals, if not more practical. (Of course someone has to write up the descriptions, I am happy
Intel has done that.).

24 ciforth manual

So look at my opcode sheets. If you think an instruction would be what you want, use SHOW:
to find out how it is to be completed. If you are at all a bit familiar, most of the time you can
understand what your options are. If not compare with an Intel opcode sheet, and look up the
instruction that sits on the same place. If you don’t understand them, you can still experiment
in a Forth to find out.

The assembler in the Library Addressable by Blocks (block file) hasn’t the advanced features
of disassembly, completion and error detection. It is intended for incidental use, to speed up a
crucial word. But the code is fully compatible, so you can develop using the full assembler.

5.2 Reliability

I skimped on write up. I didn’t skimp on testing. All full assemblers, like asi386.frt and
aspentium.frt, are tested in this way:

1. All instructions are generated. (Because this uses the same mechanism as checking during
entry, it is most unlikely that you will get an instruction assembled that is not in this set.)

2. They are assembled.
3. They are disassembled again and compared with the original code, which must be the same.

4. They are disassembled by a different tool (e.g. GNU’s objdump), and the output is com-
pared with 3. This has been done manually, just once.

This leaves room for a defect of the following type: A valid instruction is rejected or has been
totally overlooked.

But opcode maps reveal their Terra Incognita relentlessly. So I am quite confident to promise
a bottle of good Irish whiskey to the first one to come up with a defect in this assembler.

The full set of instructions, with all operand combinations sit in a file for reference. This
is all barring the 256-way ‘SIB’ construction and prefixes, or combinations thereof. This would
explode this approach to beyond the practical. Straightforward generation of all instructions is
also not practical for the Alpha with 32K register combinations per instruction. This is solved
by defining “interesting” registers that are used as examples and leaving out opcode-operand
combinations with uninteresting registers.

5.3 Principle of operation

In making an assembler for the Pentium it turns out that the in-between-step of creation defining
words for each type of assembly gets in the way. There are just too many of them.

MASM heavily overloads the instruction, in particular ‘MOV’ . Once I used to criticise Intel
because they had an unpleasant to use instruction set with ‘MOV’ ‘MVR’ and ‘MVI’ for move
instructions. In hindsight I find the use of different opcodes correct. (I mean they are really
different instructions, it might have been better if they weren’t. But an assembler must live up
to the truth.) Where the Intel folks really go overboard is with the disambiguation of essentially
ambiguous constructs, by things as ‘OFFSET’ ‘BYTE POINTER’ ‘ASSUME’ . You can no longer find
out what the instruction means by itself.

A simple example to illustrate this problem is

[INC [BX]

Are we to increment the byte or the word at BX? Intel’s solution is ‘INC BYTE POINTER BX’)
The INC instruction in this (the mod/rm) incarnation has a size bit. Here we require that this
bit be filled in explicitly, either with ¢ X| > or ¢ B| '). Failing to do so is a fatal error. This
results in the rule: if an instruction doesn’t determine the operand size (some do, like LEA,),

Chapter 5: Assembler 25

then a size fixup is needed: © X| or ©’ B .
In this assembler this looks like

[INC, Bl z0| [BX]

This completely unambiguously determines the actual machine code.
These are the phases in which this assembler handles an instruction:
e POSTIT phase: MOV, assembles a two byte instruction with holes.

e FIXUP phase: X| or B| fits in one of the holes left. Other fixups determine registers and
addressing mode.

e COMMA phase: First check whether the fixups have filled up all holes. Then add addresses
(or offsets) and/or immediate data, using e.g. IL, or L,

e Check whether all commaers, requested either by postit’s or fixup’s are present. This check
is actually executed by the next postit prior to assembling, or by END-CODE .

Doesn’t this system lay a burden on the programmer? Yes. He has to know exactly what
he is doing. But assembly programming is dancing on a rope. The Intel syntax tries to hide
from you were the rope is. A bad idea. There is no such thing as assembly programming for
dummies.

An advantage is that you are more aware of what instructions are there. Because you see
the duplicates.

Now if you are serious, you have to study the asgen.frt and as80.frt sources. You better
get your feet wet with as80.frt before you attack the Pentium. ‘SIB’is handled as an instruction
within an instruction, clever, but hard to understand. It deviates somewhat from the phases
explained here.

Another invention in this assembler is the family of instructions . Assembler instructions are
grouped into families with identical fixups, and an increment for the opcodes. These are defined
as a group by a single execution of a defining word. For each group there is one opportunity to
get the opcode wrong; formerly that was for each opcode.

5.4 The 8080 assembler

The 8080 assembler doesn’t take less place than Cassady’s . (In the end the postit-fixup makes
the Pentium assembler more compact, but not the 8080.) But... The regularities are much more
apparent. It is much more difficult to make a mistake with the code for the ‘ADD’ and ‘ADI’
instructions. This principle allows to make a disassembler that is independant of the instruction
information, one that will work for the 8086. A typical family are the 8 immediate- operand
instructions, with an increment of 08.

[08 C6 8 1FAMILY, ADI ACI SUI SBI ANI XRI ORI CPI

The bottom line is : the assembler proper now takes 22 lines of code. Furthermore the “call
conditional” and “return conditional” instructions where missing. This became apparent as soon
as I printed the opcode sheets. For me this means turning “jump conditional” into a family.

5.5 Opcode sheets

The makefile for the assembler project contain facilities to generate opcode sheets directly from
the instruction sets, such as asi386.ps.. For the opcode sheets featuring a n-byte prefix you

26 ciforth manual

must pass the PREFIX’ to make and a ‘MASK’ that covers the prefix and the byte opcode, e.g.
‘make asi386.ps MASK=FFFF PREFIX=0F’ The opcode sheets p0.asi386.ps and pOF.asi386.ps
are already part of the distribution and can be printed on a PostScript printer or viewed with
e.g. ‘gv.

Compare the opcode sheets with Intel’s to get an overview of what I have done to the
instruction set. In essence I have re-engineered it to make it reverse assemblable, i.e. from a
disassembly you can regenerate the machine code. This is not true for Intel’s instruction set,
e.g. Intel has the same opcode for ‘MOV, X| T| AX’| R| BX| ’and ‘MOV, X| F| BX’| R| AX|’.

To get a reminder of what instructions there are type SHOW-0PCODES . If you are a bit familiar
with the opcodes you are almost there. For if you want to know what the precise instruction
format of e.g. IMUL|AD, just type ‘SHOW: IMUL|AD,’ You can also type SHOW-ALL, but that
takes a lot of time and is more intended for test purposes. The most useful of them all is 77

that for a partially completed instruction shows all possible completions.

5.6 Details about the 80386 instructions

Read the introductory comment of asgen.frt for how the assembler keeps track of the state,
using the BI BY BA tallies.

1. A word ending in , is an “opcode” and reserves place in the dictionary. It stand for one
assembler instruction. The start of the instruction is kept and there is a bitfield (the tally)
for all bits that belong to the instruction, if only mentally. These bits are put as comment
in front of the instruction and they are considered filled in. The opcode also determines the
instruction length.

2. A fixup mostly ends in |. It OR s in some bits in an already assembled instruction. Again
there is a mask in front of fixups and in using the fixup these bits are considered to be filled
in. A fixup cannot touch data before the start of the latest instruction. Some addressing
modes fixups do not have | in them. This is in order to adhere more closely to conventions
regarding those addressing modes. This much can be said. You can be sure that a word
containing [and/or J is a fixup, that it is addressing mode related and that the addressing
is indirect.

3. Families can be constructed from instructions or fixups with the same tally bit fields, pro-
vided the instructions differ by a fixed increment. The tallies also contain information about
data and addresses following. These fields must be the same too.

4. The part before a possible | in an instruction — but excluding an optional trailing I — is the
opcode. Opcodes define indeed a same action.

5. The part after | in an instruction may be considered a built in fixup where irregularity
forbids to use a real fixup. A X stands for xell or natural data width. This is 16 bit for
a 16 bit assembler and 32 bit for a 32 bit assembler. These can be overruled with AS:,

applying to DX| and MEM| and with 0S:, applying to data required where there is an I
suffix. The commaers always reveal their true width. It is either IW, or IL, .
6. Width fixups determine the data width : X|

(xell or natural data width 16/32) or B| (8 bit) unless implied. Offset fixups determine
the offset or address width : X0/
(xell or natural data width 16/32) or BO| (8 bit) or Z0| .

7. Instruction ending in I have an immediate data field after all fixups. This can be either
IB, IW, IL, IQ, (8 16 32 64 bit). If there are width fixups they should correspond with
the data.

8. Instructions ending in ‘|SG’ builtin fixup (segments) require SG, (which is always 16 bits).
For Xells in the presence of width overrules, the programmer should carefully insert W, or
L, whatever appropriate.

Chapter 5: Assembler 27

10.
11.

12.

13.

14.

15.

16.

17.

18.

1.

With r/m you can have offsets (for BO| and X0|) that must be assembled using B, or L,
but mind the previous point.

If an instructions with r/m has one register, it is always the target, i.e. it is modified.

Instruction with r/m can have a register instead of memory indicated by the normal fixups
AX| etc.

If instructions with r/m have two registers, the second one is indicated by a prime such as
AX’ | . Stated differently, if an instruction can handle two general registers, the one that
cannot be replaced by a memory reference gets a prime.

If T| or F| are present they apply to the primed register. T| “to” means that the primed
register is modified. Absent those the primed register is the one that is modified. e.g. in
LEA,

At the start of an instruction the mask of the previous instruction plus fixup should add up
non-overlappingly to a full field. Offsets and immediate data should have been comma-ed
in in order as required. This is diagnosed in the great assembler.

Instructions ending in ¢ :, ’ are prefixes and are considered in their own right. They have
no fixups.

The Scaled Index Byte is handled internally in the following way: The fixup SIB| closes
the previous instruction (i.e. fill up its bit field), but possible immediate data and offsets
are kept. Then SIB, starts a new instruction. The user merely needs to use a fixup with
an unbalanced opening square bracket such as [AX , that handles this transparently.

The SET, instruction unfortunately requires a duplicate of the 0| etc. fixups of the J, and
J|X, instructions, called 0’| etc. It

Similarly, some single byte instructions require X’ | and B’ | instead of X| and B| that are
used for the ubiquitous instructions with r/m. (FIXME! This probably is remedied in the
first release of ciasdis.)

This is the way the disassembler works.

Find the first instruction that agrees with the data at the program counter. Tally the bits.
The instructions length follows from the instruction. As does the presence of address offsets
and immediate data. In the current implementation the search follows dictionary links.
The dictionary must be organized such that the correct instruction is found first. If two
instructions agree with the data, in general the one that covers the most bits must be found
first.

Find the first fixup that agrees with untallied bits. Note that opcode and previous fixups
may have set bits in the BAD variable. Any fixups that set a bit in BAD that would result in
a conflict are not considered.

If not all bits have been tallied go to 2, searching the dictionary from where we left off

. Disassemble the address offsets and immediate data, in accordance with the instruction.

Length is determined from fixups and prefix bytes. The commaers that were used to assem-
ble the data have an associated execution token to disassemble the data. This is used to
advantage to change the representation from program counter relative to absolute, or look
up and show the name for a label.

5.7 16 and 32 bits code and segments

Since commaers are checked correctly in the presence of prefixes and you have never to overrule
error-checking (as was needed prior to version 4.0.6.)

In fixup X is used to mean Xell, or the natural word length. This is 16 bits for 16 bits

segments and 32 bits for 32 bits segments. Likewise in PostIt-FixUp AX means Intel’s AX for 16
bits segments, EAX for 32 bits segments and RAX

28 ciforth manual

for 64 bits segments.
The description of 16 or 32 bits in the Intel manuals is messy. These are the rules.

1. In real mode all sizes are 16 bits.

2. In protected mode the size of an address or Xell offset agrees with the size of the code
segment.

3. In protected mode the size of an immediate data Xell agrees with the size of the applicable
data segment. Mostly this is the data segment, but it may be the stack segment or some
extra segment in the presence of segment override prefixes.

4. In all previous cases the code length can be swapped between 16 and 32 bits by a code
length override prefix 0S: , the data length by a data length override prefix AS: |
The 16 bit indexing in a 32 bit assembler have separate fixup’s, that all end in a %-sign.

In comma-ing, you must always select the proper one, commaers contain either W or L or @
for 2, 4 or 8 byte widths.

After the directive BITS-16 code is generated for and checked against 16 bit code and data
segments. After the directive BITS-32 code is generated for and checked against 32 bit code
and data segments. At this moment there 64 bit code is not supported, but see below.

In a 16 bits segments the following commaers must be used: W, IW, (RW,) and RW, .
In a 32 bits segments the following commaers must be used: L, IL, (RL,) and RL, .

The prefix 0S: switches the following opcode to use IL, instead of IW, and vice versa.
Similarly the prefix AS: switches between W,

and L, , or between RW, and RL, .
The great assembler enforces all these rules.

While mixing modes, whenever you get error messages and you are sure you know better than
the assembler, put !TALLY before the word that gives the error messages. This will override the
error detection . Proper use of the BITS-xx directives makes this largely unnecessary, but it
can be needed if you use e.g. an extra segment ES| that is 16 bits in an otherwise 32 bits
environment.

A 64-bit assembler is not yet accomodated. Even so the assembler built in into forth.lab
is used to assemble the floating point words. Only instructions involving integers and memory
storage are different between 32 and 64 bits. Sometimes we need the 64-bit related prefix 0x48
to force the size to 64 bit.

5.8 The built in assembler

From within ciforth one can load an assembler from the installed LAB library by the command
WANT ASSEMBLERi86 . Automatically a 32 bit assembler is loaded if the Forth itself is 32 bits and
a 16 bit assembler for the 16 bit forths. This is a simplified version with no error checking and
no provisions for 16/32 bit mixing. (Those are not needed, because you can mix with impunity.)
In the future this assembler is now (since 4.0.6) fully compatible with the large file-based one.

Consequently you can take a debugged program and run it through the LAB assembler.
The built in assembler has no error checking.

IMPORTANT NOTE: The 4.0.6 version and later may contain assembler code in the LAB
file that has not yet been converted. This code largely relates to a booting version; It will be
updated as soon as I have a booting version in a binary form available.

Chapter 5: Assembler 29

5.9 A rant about redundancy

You could complain about redundancy in postit-fixup assemblers. But there is an advantage
to that, it helps detect invalid combinations of instructions parts. They look bad at first sight.
What about

‘MOV, Bl T| [BX+SI] R| AX|’

‘MOV,’ needs two operands but there is no primary operand in sight. [BX+SI] would not qualify.
and not even BX| because the primary operand should be marked with a prime.

‘MOV, X| T| BX| AX|’ looks bad because you know BX| and AX| work on the same bit fields, so
it easy to remember you need the prime. T| and F| refer to the primary operands, so gone is
the endless confusion about what is the destination of the move.

‘MOV, X| T| BX’| R| AL’| looks bad , because AL| could not possibly qualify as an X register.
‘MOV, X| T| BX’| AX|’ looks bad , because soon you will adopt the habit that one of the 8 main
register always must be preceeded with T| F| or R| .

‘MOV, X| T| BX’| R| AX|’ looks right but you still can code ‘MOV, AX| BX’| R| T| X|’ if you
prefer your fixups in alphabetic order. (A nice rule for those Code Standard Police out there?).

And yes ‘ES: 0S: MOV, X| T| DI’| X0| [BP +8* AX] FFFFF800 L,’ though being correct, and
in a logical order, looks still bad, because it is bad in the sense that the Pentium design got
overboard in complication. (This example is from the built-in assembler, the one in asi386.frt
redefines [BP c.s. to get rid of the SIB|, instruction.)

First remark: lets assume this is 32 bit code,(because otherwise there would not be a SIB, sure?)
There are 3 sizes involved :

e The size of the data transported this is always the ‘X’ as in X| . Then the first X| changes
its meaning to 16 bit, because of the 0S: prefix.

e The fixups related to address offsets X0| and L, must agree and are 32 bits because you are
in a 32 bits segment and this was not be overridden.

e The offset (in ‘“+AX]’) is counted in 64 bits. Apparently, the ‘DI’ is fetched from two cell
records.

And .. by the way the data is placed in the extra segment. Add a bit of awareness of the
cost of the instructions in execution time and take care of the difference between the Pentium
processors MMX en III and what not and you will see that assembly program is not for the faint
of heart. The ‘ASSUME’ of the MASM assembler buys you nothing, but inconvenience.

5.10 Reference opcodes, Intel 386

Table one contains all the opcodes used in asi386.frt in alphabetic order, with | sorted before
any letter. The opcodes that lift the assembler to the level of the Pentium is separately in table
3, in order not to make the tables overly long. All opcodes on the first position are the same as
Intel opcodes, barring the bar. Note that sometimes parts that are integrated in the opcodes in
Intel mnemonics are a separate fixup in the Postit-Fixup assembler. Examples are the condition
codes in jumps.

You can use it in two ways.

e You want the opcode for some known Intel opcode.
Look it up in the first column. One of the opcodes on that line is what you want. To pick
the right one, consider the extension that are explained in table 2. Exception: ‘PUSHI’ is
not on the line with ‘PUSH’ . Some times you have to trim built in size designators, e.g. you
look up ‘LODSW’ but you are stuck at LODS , so that’s it. With ¢ SHOW: LODS, ’ you can see
what the operands look like.

e You want to know what a POSIT/FIXUP code does. Look it up in the table, on the first
word on the line you should recognize an Intel opcode. For example you have CALLFAROI,

30 ciforth manual

That is at the line with CALL, . So the combination of operands for CALLFAROI, are to be
found in the description for ‘CALL’ in the Intel manuals.

Note. Some things are ugly. LDS, should be L|DS, . I would replace MOV|FA, by STA, and
MOV|TA, by LDA, . But that would make the cross referencing more problematic. Note. The
meaning of the operands for ‘JMP’ and ‘JMPFAR’ are totally different. So my suffices are different.

Table 1. Opcode cross reference.
AAA,
AAD,
AAM,
AAS,

ADC, ADCI, ADCI| A, ADCSI,
ADD, ADDI, ADDI| A, ADDSI,
AND, ANDI, ANDI| A, ANDSI,
ARPL,

AS:,
BOUND,
BSF,
BSR,
BT, BTI,

BTC, BTCI,

BTR, BTRI,

BTS, BTSI,

CALL, CALLFAR, CALLFAROI, CALLO,
CBW,

CLC,
CLD,
CLI,
CLTS,
CMC,

CMP, CMPI, CMPI| A,
CMPS, CMPSI,
CPUID,

Cs:,
CWD,
DAA,
DAS,

DEC, DECX,
DIV|AD,

DS:,
ENTER,

Chapter 5: Assembler

ES:,

FS:,

GS:,

HLT,
IDIV|AD,

IMUL, IMUL| AD, IMULI, IMULSI,
INC, INC| X,
INS,

INT, INT3, INTO,
INID, IN|P,
IRET,

J, JIX, (Intel Jcc)
JCXZ,

JMP, JMPFAR, JMPFAROI, JMPO, JMPS,
LAHF,

LAR,
LDS,
LEA,
LEAVE,
LES,
LFS,
LGDT,
LGS,
LIDT,
LLDT,
LMSW,
LOCK,
LODS,

LOOP, LOOPNZ, LOOPZ,
LSL,

LSS,
LTR,

MOV, MOV|CD, MOV|FA, MOV|SG, MOV| TA,
MOVI, MOVI| B, MOVI| X,
MOVS,

MOVSX| B, MOVSX| W,
MOVZX|B, MOVZX|W,
MUL| AD,

NEG,
NOT,

31

32 ciforth manual

OR, ORI, ORI| A, ORSI,
0S:,

OUTS,

OUT|D, OUT|P,
POP, POP| ALL, POP| DS, POP|ES, POP|FS, POP|GS, POP|SS, POP|X,
POPF,

PUSH, PUSH| ALL, PUSH| CS, PUSH| DS, PUSH| ES, PUSH| FS, PUSH| GS, PUSH| SS,
PUSH| X,
PUSHF,

PUSHI| B, PUSHI| X,
RCL, RCLI,

RCR, RCRI,
REPNZ,

REPZ,

RET+, RET, RETFAR+, RETFAR,
ROL, ROLI,

ROR, RORI,

SAHF,

SAR, SARI,
SBB, SBBI, SBBI| A, SBBSI,
SCAS,

SET, (Intel SETcc)
SGDT,

SHL, SHLI,
SHLD| C, SHLDI,
SHR, SHRI,
SHRD| C, SHRDI,
SIDT,

SLDT,
SMSW,
SS:,
STC,
STD,
STI,
STOS,
STR,

SUB, SUBI, SUBI| A, SUBSI,
TEST, TESTI, TESTI| A,
VERR,

VERW,
WAIT,
XCHG,

Chapter 5: Assembler 33

XCHGI AX,
XLAT,

XOR, XORI, XORI| A, XORSI,
~SIB,

Table 2 Suffixes, not separated by a |

I : Immediate operand

SI : Sign extended immediate operand
FAR : Far (sometimes combined with OI)
O : Operand

OI : Operand indirect

5.11 Reference opcodes, Pentium only.

Table three contains all the opcodes present in asipentium.frt in alphabetic order, with |
sorted before any letter. All opcodes on the first position are the same as Intel opcodes, barring
the bar. Note that again sometimes parts that are integrated in the opcodes in Intel mnemonics
are a separate fixup in the Postit-Fixup assembler.

You can use it in the same way as the Intel 386 table. But there are much less instances where
the opcodes do not agree exactly with Intels. Memory operands are specified in the same way
for floating point instructions. But in those instructions register operands are always floating
point registers.

There is at most one register specified in a floating point instruction. For two register
operation STO is always implicit. In that case normally it is the first operand as per ‘STO-ST1’.
‘al’ (abnormal operation) means STO

is the second operand as per ‘ST1-STO’. Also normally STO gets the result. ‘m|’ (modified)
means that the explicit register gets modified instead.

And don’t forget! ‘SHOW: <opcode>’ is your friend.

Table 3. Opcode cross reference. Pentium-only.
BSWAP,

CMPXCHG,
CMPXCHGSB,
F2XMl,

FABS,
FADD,
FADDP,
FBLD,
FBSTP,
FCHS,
FCLEX,
FCOM,
FCOMP,
FCOMPP,
FCOS,

34

FDECSTP,
FDIV,

FDIVP,
FFREE,
FIADD,
FICOM,
FICOMP,
FIDIV,

FILD, FILD|64,
FIMUL,

FINCSTP,
FINIT,

FIST,

FISTP, FISTP| 64,
FISUB,

FLD, FLDle,
FLDI,

FLDCW,
FLDENYV,
FLDLZ2E,
FLDL2T,
FLDLG2,
FLDLN?,
FLDPI,
FLDZ,
FMUL,
FMULP,
FNOP,
FPATAN,
FPREM,
FPREMI,
FPTAN,

FRNDINT,
FRSTOR,

FSAVE,
FSCALE,
FSIN,

FSINCOS,
FSQRT,

ciforth manual

Chapter 5: Assembler 35

FST, FST|u,
FSTCW,

FSTENYV,

FSTP, FSTP|e, FSTP| u,
FSTSW,

FSTSW|AX,
FSUB,

FSUBP,
FTST,
FUCOM,

FUCOMP,
FUCOMPP,
FXAM,

FXCH,

FXTRACT,
FYL2X,

FYL2XPI,
INVD,

INVLPG,
Illegal-1,
Illegal-2,
RDMSR,
RDTSC,
RSM,

WBINVD,
WRMSR,

XADD,

The fixups for floating point are in lower case to make some distinction with the regular
instructions. There is one fixup that conflicts with an uppercase fixup: nl . Table 4 Fixups and
their meanings, Pentium-only.

STO| : Register name
ST1|

ST2|
ST3|
ST4|
ST5|
ST6|
ST7|

36 ciforth manual

s| : Single (16 bit)

d| : Double (32 bit)

m| : Explicit register is modified

ul : Explicit is unmodied, result to STO0
n| : STO is first operand (normal)

al : STO is second operand (abnormal)
|16 : Int width in memory.

| 32 : Int width in memory.

5.12 The dreaded SIB byte

If you ask for the operands of a memory instruction (one of the simple ones is LGDT,) instead
of all the scaled index byte

(SIB) possibilities you see. ‘LGDT, BO| ~“SIB| 14 SIB,, 18, B,’ This loads the general de-
scription table from an address described by a sib-byte of 14 and an offset of 18.

The ‘“SIB| 14 SIB,,’ may be replaced by any sib-specification of the kind ‘[AX +2* SI]’.
You can ask for a reminder of the 256 possibilities by ‘SHOW: ~SIB,’

The SIB constituents are not normal fixups. They must always appear between the normal
fixups and the commaers, and the first must be the base register, the one with opening bracket,
such as [AX .

Error-prone as that may seem, the great assembler only accepts correct instructions. Instruc-
tions are verbose, but they are hard to misinterpret.

Table 3 SIB-byte fixups.

[AX : Base register
[CX : Base register
[DX : Base register
[BX : Base register
[SP : Base register
[BP : Base register
[MEM : Base memory
[SI : Base register

[DI : register

+1% : Scale by 1 byte.
+2% : Scale by 2 bytes.
+4* : Scale by 4 bytes.
+8% : Scale by 8 bytes.
AX] : Scaled index
CX] : Scaled index
DX] : Scaled index
BX] : Scaled index

0] : No index

BP] : Scaled index

SI] : Scaled index

DI] : Scaled index

For the curious:
Explanation of ‘LGDT, BO| ~“SIB| 10 SIB,, 14, B,’ This way of specifying a sib-byte would

be perfectly legal, had I not hidden those words. It shows what is going on: the instruction is
completed by “SIB| telling the assembler that a comma-er SIB,, is required.

Instead of the comma-er we use a “SIB, instruction. This specifies in fact a one byte opcode
with three fields examplified by ‘[AX +2* SI’] (and again you might say ‘+2* SI] [AX’ with the

Chapter 5: Assembler 37

same meaning.) At the same time it is a comma-er in the sense that it reports that the demand
for a sib-commaer is fill filled.

Many subtleties are involved to get right the error detection and the disassembly.

5.13 An incomplete and irregular guide to the instruction
mnemonics.

The following is an attempted overview of the suffixes and fixup’s used. It may be of some help
for using the assembler because it gives some idea of some of the names. It doesn’t contain all
mnemonics, you have to consult an Intel manual anyway, just a few of them that I find hard to
remember.

It also doesn’t contain all fixup’s, only those that are particularly hard or irregular. Neither
does it contain fixups that are part of a SIB byte (treated elsewhere).

So beware!
Note that some of the instruction are Pentium and as yet not present in the asi386.frt.

Be careful with fixups that end in a % (such as [BP+IS]% . They are to be used in incidental
16 bits code, so in 16 bits code segments or for instructions preceeded by an address size overwrite
prefix.

The primed registers have a prime after the register name such as AX’ | , compared to AX| .
Some opcodes allow two operands and then always one of them is a primed register. Whether
the primed register is a source or destination is explicitly covered by T| and F| , not by any
order in which the operands appear.

The primed conditions such as Z’ | have a different reason. Those cannot be the same as
the unprimed ones, because they occur at a different place in the opcode, though I would prefer
them to be.

Some instructions
CPUID: CPU Identification
L : Load Full Pointer
LLDT: Load Local Descriptor Table Register
LGDT: Load General Descriptor Table Register
LIDT: Load Interrupt Descriptor Table Register
LTR: Load Task Register
LMSW: Load Machine Status Word
RDTSC: Read from Time Stamp Counter
RDMSR: Read from Model Specific Register
SHLD: Double Precision Shift Left
SHRD: Double Precision Shift Right
SLDT: Store Local Descriptor Table Register
SMSW: Store Machine Status Word
VERR: Verify a Segment for Reading or Writing
WRMSR: Write to Model Specific Register

Suffixes of the opcode, i.e. part of the opcode word.
[ALL : All

|CD : Control/Debug register

|FS : Replaces FS| in irregular opcodes.

| GS : Replaces GS| in irregular opcodes.

|AD : Implicit A and Double result.

| C : Implicit C (count)

38 ciforth manual

Items in Fixups.
Y| : Yes, Use the condition straight
N1 : No, Use the condition inverted

Ol : Overflow

C| : Carry

Z| : Zero

CZ| : C || Z (unsigned <=)
S| : Sign (<0)

P| : Parity (even)

Ll : S!= 0O (signed <)

LE| : L || Z (signed <=)

T| : To (primed or special register)

F| : From (primed or special register)

V| : Variable number (in shifts)

1| : Just shift by 1.

ZO| : Zero Offset

BO| : Byte Offset

XO| : Xell Offset

Items in Commaers. Note that in commaers, there is never an X. You always have to choose
between W for 16 bits and L for 32 bits or @ for 64 bits.
OW, Obligatory word

(RL,) Cell relative to IP

(RW,) Cell relative to IP

(RB,) Byte relative to IP

SG, Segment: word

P, Port number : byte

IS, Single obligatory byte

IL, immediate data : cell

IW, immediate data : cell

IB, immediate data : byte

L, address/offset data : cell

W, address/offset data : cell

B, address/offset data : byte

SIB,, Scaled index byte, an instruction with in an instruction
OB, : Obligatory byte

OW, : Obligatory word (=16bits)

There are also RB, RW, RL, based on (RB,) (RW,) (RL,) . They comma in an amount relative
to the program counter based on an absolute address, such that you can use labels. These are
used preferably, and are made to appear in the disassemblies. Otherwise no labels could appear
in disassemblies.

5.14 Assembler Errors

Errors are identified by a number. They are globally unique, so assembler error numbers do not
overlap with other ciforth error numbers, or errors returned from operating system calls. Of
course the error numbers are given in decimal, always.

The errors whose message starts with ‘AS:’ are used by the Postlt FixUp assembler in the
file asgen.frt. See Chapter 7 [Errors], page 49, for other errors.

e ‘ciforth ERROR # 26 : AS: PREVIQUS INSTRUCTION INCOMPLETE’

39

You left holes in the instruction before the current one, i.e. one or more fixups like X| are
missing. Or you forget to supply data required by the opcode like OW, . With 7?7 you can
see what completions of your opcode are possible.

‘ciforth ERROR # 27 : AS: INSTRUCTION PROHIBITED IRREGULARLY’

The instruction you try to assemble would have been legal, if Intel had not made an excep-
tion just for this combination. This situation is handled by special code, to issue just this
error. (This is rare, most situations are handled by bad bits, resulting in different errors.)

‘ciforth ERROR # 28 : AS: UNEXPECTED FIXUP/COMMAER’

You try to complete an opcode by fixup’s (like X|) or comma-ers (like OW,) in a way that
conflicts with what you specified earlier. So the fixup/comma-er word at which this error
is detected conflicts with either the opcode, or one of the other fixups/comma-ers. For
example specifying both a SI’| and a DI’ | operand for a LEA, opcode.

‘ciforth ERROR # 29 : AS: DUPLICATE FIXUP/UNEXPECTED COMMAER’

You try to complete an opcode by fixup’s (like X|) or comma-ers (like OW,) in a way that
conflicts with what you specified earlier. So the fixup/comma-er word at which this error is
detected conflicts with either the opcode, or one of other fixups/comma-ers. FIXME This
explanation is the same as the previous. For example B| (byte size) with a LEA, opcode .

‘ciforth ERROR # 30 : AS: COMMAERS IN WRONG ORDER’

The opcode requires more than one data item to be comma-ed in, such as immediate data
and an address. However you put them in the wrong order. Use SHOW: .

‘ciforth ERROR # 31 : AS: DESIGN ERROR, INCOMPATIBLE MASK’

This signals an internal inconsistency in the assembler itself. If you are using an assembler
supplied with ciforth, you can report this as a defect (“bug”). The remainder of this
explanation is intended for the writers of assemblers. The bits that are filled in by an
assembler word are outside of the area were it is supposed to fill bits in. The latter are
specified separately by a mask.

‘ciforth ERROR # 32 : AS: PREVIQUS OPCODE PLUS FIXUPS INCONSISTENT’

The total instruction with opcode, fixups and data is “bad”. Somewhere there are parts
that are conflicting. This may be another one of the irregularities of the Intel instruction set.
Or the BAD data was preset with bits to indicate that you want to prohibit this instruction
on this processor, because it is not implemented. Investigate BAD for two consecutive bits
that are up, and inspect the meaning of each of the two bits.

41

6 Optimiser

6.1 Introduction

You may wonder why an optimizer for a computer language would be considered an Al appli-
cation. This optimizer is not so much for a particular language as well related to a Computer
Intelligence that has insight in her own code.

Different types of optimisations interfere and finding ones way through this certainly requires
some heuristics. The bottom line is that an optimiser qualifies as an Al application.

6.1.1 Properties

A Forth system is a database of small programs. It is worthwhile to investigate what properties
these small programs (words) might have. The flag field of a word allow to add this information
to the header. A certain combination of flags allow a particular optimisation.

6.1.2 Definitions

An annihilator is a word that only deletes an item from the stack. Examples are DROP 2DROP
NIP RDROP.

A juggler reorders the stack without adding or removing items. Examples are SWAP 2SWAP
ROT.

A duplicator copies an item from the stack. Examples are DUP OVER 2DUP.

A sequence of high level code is called stable with respect to branching if there is no branching
into or out of the sequence.

A sequence of high level code is called stable with respect to the return stack if it only pops,
what it has pushed itself, and the stack is left with the same depth as before.

A sequence is called stable if it is stable with respect to anything that is relevant in the
contest, mostly with respect to everything.

6.1.3 Notations

In the following we will denote a stack effects as < N — M >. This means that N items are popped
and replaced by M new items. So 2DROP has the effect of < 2 — 0 >. Pointy brackets are used
to make a distinction with the usual stack effect notation.

6.1.4 Optimisations

Optimisations are manipulations on a program source, intermediate code or machine code to
improve the speed of the resulting program. In other respect the result is inferior. Symbolic
debugging — one of Forth’s strong points — goes through the drain. (The name "optimisation"
is a misnomer.)

e Folding.

Constant folding is a well known technique in optimisation. It means that if an operator
works on constants the result may be replaced by a constant that is calculated at compile
time. In Forth we generalise this to folding. Folding refers to all words that can be replaced
by simpler words in case they receive constant data on the stack.

e Reordering.

Reordering is not so much an optimisation per se, but it allows other optimisations to kick
in. As a rule of thumb constants are moved to the top of the stack, where they fall prey to
folding. Reordering might also eliminate a juggler.

42 ciforth manual

e Anihilation.

Annihilation is the elimination of a whole sequence of operations. In Forth sometimes the
result of a calculation is dropped. Depending on the properties of the calculation, the
calculation itself can be removed. This type of annihilation is related to an annihilator. On
closer analysis it appears that any “no store” sequence with a < N — 0 > stack effect can be
replaced by N times DROP.

Another type is related to conditional branching where the condition is known at compile
time. Code known to be skipped is removed.

e Inlining.
Inlining means replacing a Forth word with its constituents. This technique is very im-

portant in Forth, more so than in other languages, due to the small size of Forth words.
Inlining is always a winner in speed, and mostly even also a winner with regard to space.

Even more important is the fact that inlining allows folding to be applied across constituent
words. This applies to high level and low level code alike.

Inlining high level code is trivial. A further inlining stage replaces a high level definition
that only calls code words, by a code definition which concatenates the code words.

6.1.5 Data collecting

In order to add introspective information to a Forth, in the first place the machine code words
must be analysed, because ultimately everything is defined in terms of code words. For this
purpose the code words are disassembled using a disassembler that allows to readily inspect the
parts of a disassembled instruction. A Postit-Fixup assembler and disassembler is well suited.

e By inspecting register words in the disassembly, registers usage can be accumulated. This
information is then added to the header.

e At the same time information about whether memory or I/O ports are accessed for read
or write can be collected. It turns out to be useful make a difference between input and
output side effects. Here the words to look out for are the MOVE and IN/OUT instructions,
operations that access memory (in fact all operations that not target registers) and special
instructions like the string operations on Pentia.

e Finally the stack effect can be deduced from the number of POP’s and PUSH’es. And the
use of the return stack can be marked, which mostly warrants a special treatment.

After all code words have been analysed, the stack effects and register usage can be concluded
for all high level words. The stack effect of a high level words is the concatenation of the stack
effect of its constituents. The register usage of a high level word is the logical or of the register
usage of the constituents, as are its side effects.

There will no doubt be exceptions. It is wrong to cater for too many exceptional situation
in such a heuristic tool. Instead, the exception are filled in by hand before the automated
collection is started, it fills in only as yet unknown items. Of course it helps to have a simple
and straightforward Forth to begin with.

6.1.6 Purpose

A \ci in general will use optimisation to generate a temporary definition that is much faster,
and retain all the valuable partial information about words.

In normal non-Al applications, words are recursively replaced by faster words, and those
eventually by code definitions. Meanwhile words that are no longer directly used in the final
application are eliminated. For space conservation headers may be removed as well, provided in
the application no dictionary lookup is needed.

Chapter 6: Optimiser 43

6.2 Implementation

The following implementation notes apply to a 32 bits Pentium Forth where a full cell (4 bytes,
0..3) is reserved for the flags. They must be considered as an example. The information about
a word, optimisation opportunities and stack effect, sits in the flag field. Whenever nothing is
filled in in the flag field, it means unknown. This applies equally to the stack effect as to the
optimisation flags.

6.2.1 Stack effects

The information about the stack effects sits in the byte 3 of the flag field. The highest nibble
of this third byte applies to input. It is the number of stack items popped plus one. The lowest
nibble thusly indicates the number of pushed items. 0 means an unknown (not yet analysed)
stack effect. OFH indicates a variable number of items.

The stack effect is added in three steps. For all low level words the stack effect is found by
counting pops and pushes. Irregular stack effects are corrected as well as filled in for high level
words. All high level stack effects are derived from the stack effect of their constituents.

Code words are analysed by disassembling the code that is pointed to by the code field to
the first “next” code encountered. For each instruction the opcode, which is the first part of its
disassembly, is looked up in a set of possible pop and push instructions.

Irregularities are just tabulated in the source code of the analyser.

[

Words are recognized by their code field. High level words are either created by “:” or by a
“CREATE .. DOES>” construction . They are recognised by the code field containing DOCOL
or DODOES respectively. For both the data field points to a chain of high level calls, i.e. a
number of such calls possibly with inlined data and ending in a “(;)”, the word compiled by ;.
(The result of this “high level next” is to return control is returned to the word that called this

one.) For a linear chain of calls the stack effect is calculated as follows:
e Start with a effect of <0 -0 >
e For each constituent
Subtract the pops from the left (output) nibble. If the output nibble is negative, add its
(absolute) value to inputs, and make it zero. Add the pushes to the left (output) nibble.
(Correction by 11H is not yet done).

The following exceptions to a linear chain have special treatment:
e LIT BRANCH’es and SKIP are followed by inline data that must be taken care off

e A BRANCH or 0BRANCH forward is always taken, analysing just one path through a
definition: the shortest one. A more sophisticated way is to analyse all paths and conclude
a variable outcome if it is not consistent or any of the paths contains a variable constituent.

o If the stack effect of a constituent is variable, the result is variable, overruling any other
outcome

e If the stack effect of a constituent is unknown, the result is unknown, overruling any other
outcome except variable.

e For a CREATE .. DOES> word the linear chain pointed to by the DOES> pointer is
analysed. However the stack effect is initialised to < 0 — 1 > to reflect the passing of the
data pointer to the DOES> part.

e '<SOME-WORD> EXECUTE has the stack effect of <SOME-WORD> . Other occurrences
of EXECUTE lead to a variable stack effect. Lateron we will leave this to the optimiser, but
at the stage of analysing the kernel this is useful, especially because all usage of EXECUTE
in the kernel is of this type.

e <SOME-WORD> CATCH has the stack effect of <SOME-WORD> plus an extra output.
Other occurrences of CATCH lead to a variable stack effect. So a word is treated as if

44 ciforth manual

exceptions do not occur. This is okay because the stack effect is not relevant in case of
exceptions.

A high level word is recognised by its code field address containing DOCOL , i.e. the nesting
routine for the interpreter. A CREATE .. DOES> word is detected by is code field address
containing DODOES , i.e. the common code that starts up words defined by compiler extension.
All other words are treated as code.

The whole of Forth is treated as follows:
e Fill in the exception
e Fill in the code words

e Sweep repeatedly through the dictionary, from early to latest: For each unknown stack
effect, try to find it by discriminating between DODOES DOCOL and other words, Stop if
no progress is made any more.

Hopefully everything is known now, but maybe we must add to the exceptions. And repeat
the above process.

The notion of a simple sequence is one that doesn’t reach to the stack outside what is defined
within the sequence.

6.2.2 Optimisation classes

As has been pointed out, the optimisation class of a word is indicated by a bit set in the flags
field. Each bit set to true opens up a particular opportunity for optimisation. Further a sequence
has a certain class if each constituent has that class. For example, if one of the words called
does a store, the sequence is found to do a store and the optimisations that would be allowed
by “no stores” are blocked. So the optimisation class of a sequence is the logical or of the oc’s
of the constituents. This can be done efficiently by bit-wise or operations.

6.2.2.1 The no store bit.

The "no store" bit would better be named "no output side effect" bit. It indicates that the
outside world doesn’t change by executing this word. Again not that the stacks and internal
registers are inside. Note that fetching from an input port has an output side effect, (as well as
an input side effect.)

The following optimisation are opened up:

e In combination with an annihilator. If the output of a "no store" sequence is annihilated,
the whole sequence and the annihilator may be left out. Example: BASE CELL+ XX NIP
becomes XX

e In combination with a juggler. If the outputs of "no store" sequence are juggled, the
sequences itself may be juggled, eliminating the juggler. Example: XX CELL+ BASE
SWAP becomes BASE XX CELL+

e In combination with a duplicator. Again a sequence may be duplicated and the duplicator
eliminated. This is not an optimisation, except for the duplication of constants. Going the
other direction can be an optimisation. Two identical sequences with no output side effect
can be replaced by one and a duplicator. Example: (for a recursive definition with stack
effect < 1 -1 > and no side effects) 12 RECURSE OVER RECURSE becomes 12 RECURSE
12 RECURSE (elimination duplicator)

12 RECURSE 12 RECURSE becomes 12 RECURSE DUP. (introducing duplicator)

6.2.2.2 The no fetch property.

The "no fetch" bit would better be named "no input side effect" bit. It indicates that the
outside world affects the outcome of this word. Input side effects are weaker than output side
effects and the knowledge that they are absent allows less optimisation.

Chapter 6: Optimiser 45

6.2.2.3 The no stack effect property.

The "no stack effect fetch" bit refers to absolute accesses of the stacks, i.e. where the data or
return stack are not used as stacks. Typical examples are DEPTH and RSP. These words are
rare but prevent considerable optimisation.

6.2.2.4 The no side effect property.

The combination of the “no store ”, “no fetch ” and “no stack effect ” properties is quite

common. Such a word is said to have the “no side effect” property. The combination allows
substantially more optimisation than each alone. We will use the abbreviation NS for this
important concept. Examples are CONSTANT’s, VARIABLE’s, operators like + or NEGATE,
and all stack manipulations: jugglers, annihilator, duplicators.

NS-words are amenable to folding:

e If a NS-sequence has only constant inputs, it may be run at compile time. Its inputs and
the code sequence may be replaced by the resulting constant outputs. Example: After "12
4 3 SWAP * +" is replaced by 24.

e If a NS-sequence has no inputs, it may be run at compile time and replaced by the resulting
constant outputs. The difference with the preceeding example is that the sequence starts
with 12 instead of *. Any literals are of course NS.

On closer inspection the second condition is equivalent to the first. It is the more easy one
to implement.

6.2.2.5 Associativity.

An operator with two inputs and one output, so called “binary operators” can have, in addition to
NS, the property of associativity. This refers to a situation where three operands are involved.
Examples are OR and + . However not F+ . In the following we will denote an associative
operator by %. Associativity allows to replace the sequence “x % y %” with “x y % %” where
it may be that “x y %” can be folded into a constant. Example: (assuming a 64-bit Forth)
“CELL+ CELL+” is first inlined to “8 + 8 +” then associated to “8 8 + +” then folded to “16 +”.
Note that it is not necessary to look for other patterns, in view of other transformation that are
done.

6.2.2.6 Short circuit evaluation.

Another optimisation aplicable to binary NS-operators is short circuit evaluation. This is the
situation where the result is known, while only one of the operands is known, such as “FFFF
AND” “FFFF OR” “0 +” “0 XOR” and “0 *”. Some of these operations can be just dropped,
while in other cases the result is known and the other operand (possibly non-constant) can be
dropped.

6.2.3 Optimisation by recursive inlining

A word is optimized by first optimizing its constituents, then inlining the constituents and apply
any optimisation opportunities like folding that open up.

In more detail we have the following steps:
e Check.

First of all check whether the item has been optimised already. We do in fact a “depth first”
optimisation, so the words lowest in the call hierarchy are optimised first. It is important
to only attempt optimisation once. This cuts the recursion short.

46 ciforth manual

e Recurse

For all constituent words of this definition, do an optimisation, such as defined in these
steps.

e Inline.

Build up an executable sequence in the dictionary. Inline a constituents word, keeping track
of all opportunities to optimise.

e Folding Try to build up a sequence of NS-words that starts with constants and where each
word following doesn’t consume more inputs than are available. Consequently the outputs
are available as constants. (In the example program this can be done at the same time as
the inlining. Maybe that is unwise.)

e Breakdown.

When a sequence of NS-words breaks down, we have identified a sequence that can be run
at compile time. This sequence is run, and removed from the output sequence. Then the
output of the run is compiled, as a sequence of constants.

A more sophisticated method guarantees that constants move to the top as late as possible,
which is favourable for other optimisations. In behalf of this, before compiling the sequence
of constant, the code that follows is inspected. If a sequence is found with a < 0 — 0 > effect,
that sequence is placed in front of the constants. The sequence need not have any special
properties, except for the weak “no stack side effect” property. If a sequence is found with
a < N — 0 > effect and N is smaller than the number of constants, a sequence with a < 0
— 0 > is can be constructed by adding N of the constants in front of it. The N constants
are added to the output sequence, followed by the “no stack side effect” sequence and the
other, very first, constants.

e Special opportunities.

After inlining the sequence is checked whether it allows special optimisations, by comparing
it to a table of patterns. Examples are the associativity optimisation with a “operand %
operand %” pattern, and the execute optimisation with a “literal EXECUTE” pattern. In
a fashion similar to the inlining a new sequence is built up. If there was any improvement,
a new folding step must be attempted.

e Replace.

After inlining is finished, the sequence is now attached to the word we are optimizing to
replace the original sequence. Maybe the original code is kept if no folding took place
and/or the sequence is longer that a certain limit.

e Mark properties The current word is marked as optimised. Its stack effect and its optimiza-
tion classes are derived from its constituents and added to the flags header.

6.2.4 Inlining and control words

In the following with control words we will indicate words like BRANCH DO and EXIT that
affect the flow of the program.

With respect to control words the optimiser will have as a goal to ultimately only have a
body of code that consists of basic blocks (Dragon book terminology) i.e. straight code ending
in a branch or a conditional branch, where branches only end at a the start of a basic block.

Thereafter the code can be replaced by machine code as is found in the constituent words.
This code is inspected by a peep hole optimiser, eliminating e.g. a push pop sequences. In
exceptional cases Forth calls to high level code, may need to be inserted, which block probably
most possibilities for further optimisation.

Originally a DO LOOP looks like (DO) OFFSET (LOOP) . A LEAVE returns to after
(LOOP) by discarding return stack parameters. The OFFSET allows (DO) to find the return

47

address. In order to optimise this DO LOOP was replaced by a (DO) _ ... 1 (+LOOP) 0BRANCH
OFFSET UNLOOP. Here (+LOOP) leaves a flag. The new (+LOOP) has now normal inlinable

word.

Now LEAVE must be replaced by a branch to UNLOOP.

DO OFFSET can be inlined to - 2>R . The dummy return address is no longer used, and
hopefully will be removed by further optimisation.

The EXIT must be replaced by a branch to the end of the word. Then this can be unlined
as is.

Recursion represents a problem. Surely a recursive word without side effects can be optimised
if the input is constant. The word RECURSE can be replaced by inlining the word itself, which
may make sense if it triggers folding operations. Tail call replacement is easy enough. Replacing
a recursive word by low level code is not straightforward because one of the constituent words,
i.e. itself, is not available in machine code form. A recursive word without side effects may be
memoized to advantage though.

49

7 Errors

Errors are uniquely identified by a number. The error code is the same as the THROW code. In
other words the Forth exception system is used for errors. A ciforth error always displays the
text “ciforth ERROR #” plus the error number, immediately and directly. Of course the error
numbers are given in decimal, irrespective of BASE . This allows you to look up the error in the
section “Error explanations”. More specific problems are addressed in the section “Common

Problems”.

7.1 Error philosophy

If you know the error number issued by ciforth, the situation you are in is identified, and you
can read an explanation in the next section. Preferably in addition to the number a mnemonic
message is displayed. It is fetched from the library file . But this is not always possible, such is
the nature of error situations. A mnemonic message has a size limited to 63 characters and is
therefore seldomly a sufficient explanation.

A good error system gives additional specific information about the error. In a plain ciforth
this is limited to the input line that generated the error. Via the library file you may install a
more sophisticated error reporting, if available.

Within ciforth itself all error situation have their unique identification. You may issue errors
yourself at your discretion using THROW or, preferably, 7ERROR and use an error number with an
applicable message. However, unless yours is a quick and dirty program, you are encouraged to

use some other unique error number, and document it.

7.2 Common problems

7.2.1 Error 11 or 12 caused by lower case.

If you type a standard word like words in lower case, it will not be recognised, resulting in error
11. Similarly ’> words results in error 12. This is because the names as defined in the standard
are in upper case and wina64 is case sensitive , i.e. the difference between lower and upper case
is significant and only words that match in this respect too are found in the dictionary.

After ‘1 LOAD’ or if started up using ‘lina -a’ or ‘lina -r’ you have WANTED and WANT
available. You may now issue ‘ WANT CASE-INSENSITIVE ’ and switch the system into case-
insensitivity and back by issuing the words CASE-INSENSITIVE and CASE-SENSITIVE .

Case insensitivity applies to the words looked up in the dictionary, not to hex digits.

7.2.2 Error 8 or only error numbers

If you get an error 8 as soon as you try to LOAD or LIST a screen or use an option, or if errors
show up only as numbers without the mnemonic message, this is because you cannot access the
library file. It may not be there, or it may not be at the expected place. ciforth contains a string
BLOCK-FILE , that contains the name of the library file interpreter, with as a default forth.lab.
If this is not correct you may change it as appropriate by e.g.

The library is accessible for read and write access and mnemonic message will be fetched
from it, after you install it with ‘2 BLOCK-INIT 1 WARNING ! .

50 ciforth manual

7.2.3 Error 8 while editing a screen

If after editing a screen, you get error 8, the screen has not been written to disk, because you
have no write access for the library file. You must issue DEVELOP which reopens the library file
in READ_WRITE mode. Normally this should be part of loading the EDITOR .

You may always edit and use a private copy of the library file. The ‘-i’ options installs
a copy of ciforth to wherever you want, and you can edit there. Or you can copy the official
library file, and edit the copy, then use it by the ‘-1’ option. See Chapter 4 [Manual], page 7,
for how options work. The ‘-1’ option itself works only if at least the official library file has
been correctly installed.

7.3 Error explanations

This section shows the explanation of the errors in ascending order. In actual situations some-
times you may not see the part after the semi colon. If in this section an explanation is missing,
this means that the error is given for reference only; the error cannot be generated by your
wina64, but maybe by other version of ciforth or even a differently configured wina64. For ex-
ample for a version without security you will never see error 1. If it says “not used”, this means
it is not used by any ciforth.
The errors whose message starts with ‘AS:’ are used by the Postlt FixUp assembler in the
file asgen.frt,(see Chapter 5 [Assembler]|, page 23).
Negative error numbers are those reported by MS-Windows. If possible, mnemonic error
messages are shown. An explanation of the error is available in the manuals only.
‘ciforth ERROR # -2 : No such file’
is an example of a Linux message. .
Here are the error explanations.
e ‘ciforth ERROR # XXX : (NO TEXT MESSAGE AVAILABLE FOR THIS ERROR)’
This is the only messages that is common to more errors, anything goes at the place of
XXX. It means that information about this error is not in the library, but the error number
remains to identify the error. The error number is probably used by user programs and
hopefully documented there. So you can allocate error numbers not yet in use, and use
them to identify your error situations. You can add messages to the library, but errors
outside of the range [-256 63] need an edit of the source, or regeneration using adapted
values of MA_ERRORMIN M4_ERRORMAX .
e ‘ciforth ERROR # 1 : EMPTY STACK’
The stack has underflowed. This is detected by 7?STACK at several places, in particular in
INTERPRET after each word interpreted or compiled. There is ample slack, but malicious
intent can crash the system before this is detected.
e ‘ciforth ERROR # 2 : DICTIONARY FULL’
Not used.
e ‘ciforth ERROR # 3 : FIRST ARGUMENT MUST BE OPTION’
If you pass arguments to ciforth, your first argument must be an option (such as -a),
otherwise it doesn’t know what to do with it.
e ‘ciforth ERROR # 4 : ISN’T UNIQUE’
Not being unique is not so much an error as a warning. The word printed is the latest
defined. A word with the same name exists already in the current search order.
e ‘ciforth ERROR # 5 : EMPTY NAME FOR NEW DEFINITION’
An attempt is made to define a new word with an empty string for a name. This is detected
by (CREATE) . All defining word can return this message. It is typically caused by using
such a word at the end of a line.

Chapter 7: Errors 51

‘ciforth ERROR # 6 : DISK RANGE 7’
Reading to the terminal input buffer failed. The message is probably inappropriate.
‘ciforth ERROR # 7 : FULL STACK/DICTIONARY FULL’

The stack has run into the dictionary. This can be caused by pushing too many items, but
usually it must be interpreted as dictionary full. If you have enough room, you have passed
a wrong value to ALLOT . This is detected at several places, in particular in INTERPRET after
each word interpreted.

‘ciforth ERROR # 8 : ERROR ACCESSING BLOCKS FROM MASS STORAGE’

An access to the Library Accessible by Block (screen aka block file) has failed. Or if you
are an advanced user, and used the block system at your own discretion, it simply means
that access to the blocks has failed.

This is detected by ?7DISK-ERROR called from places where a disk access has occurred. It may
be that the library file has not been properly installed. Check the content of BLOCK-FILE .
You may not have the right to access it. Try to view the file. Normally the library file is
opened read-only. If you want to edit it make sure to do DEVELOP in order to reopen it in
read/write mode. Otherwise you get this message too.

‘ciforth ERROR # 9 : UNRESOLVED FORWARD REFERENCE’

A word can be compiled before it is fully defined, with a standard idiom like DEFER or
ciforth idiom :F . If it is still not fully defined when it is used, this error is issued.

‘ciforth ERROR # 10 : NOT A WORD, NOR A NUMBER OR OTHER DENOTATION’

The string printed was not found in the dictionary as such, but its first part matches a
denotation . The denotation word however rejected it as not properly formed. An example
of this is a number containing some non-digit character, or the character denotation &
followed by more than one character. It may also be a miss-spelled word that looks like a
number, e.g. ‘25WAP’ . Be aware that denotations may mask regular words. This will only
happen with user-defined denotations. Built-in denotations are in the ONLY namespace,
that can only be accessed last, because it ends the search order. Note that hex digits must
be typed in uppercase, even if "CASE-SENSITIVE" is in effect. Error 10 may be caused by
using lower case where upper case is expected, such as for ISO standard words. See the
section "Common problems" in this chapter if you want to make ciforth case insensitive.

‘ciforth ERROR # 11 : WORD IS NOT FOUND’
The string printed was not found in the dictionary. This error is detected by ’ (tick). This

may be caused by using lower case where upper case is required for ISO standard words. See
the section "Common problems" in this chapter if you want to make ciforth case insensitive.

‘ciforth ERROR # 12 : NOT RECOGNIZED’

The string printed was not found in the dictionary, nor does it match a number, or some
other denotation. This may be caused by using lower case where upper case is required for
ISO standard words or for hex digits. See the section "Common problems" in this chapter
if you want to make ciforth case insensitive.

‘ciforth ERROR # 13 : ERROR, NO FURTHER INFORMATION’

This error is used temporarily, whenever there is need for an error message but there is not
yet one assigned.

‘ciforth ERROR # 14 : SAVE/RESTORE MUST RUN FROM FLOPPY’
‘ciforth ERROR # 15 : CANNOT FIND WORD TO BE POSTPONED’

The word following POSTPONE must be postponed, but it can’t be found in the search
order.

52

ciforth manual

‘ciforth ERROR # 16 : CANNOT FIND WORD TO BE COMPILED’

The word following [COMPILE] must be postponed, but it can’t be found in the search
order.

‘ciforth ERROR # 17 : COMPILATION ONLY, USE IN DEFINITION’

This error is reported by 7COMP . You try to use a word that doesn’t work properly in

interpret mode. This mostly refers to control words like IF and DO . If you want control
words to work in interpret mode, use WANT -scripting- .

‘ciforth ERROR # 18 : EXECUTION ONLY’

This error is reported by ?EXEC. . You try to use a word that doesn’t work properly in
compile mode. You will not see this error, because all words in ciforth do.

‘ciforth ERROR # 19 : CONDITIONALS NOT PAIRED’

This error is reported by ?PAIRS . You try to improperly use control words that pair up
(like IF and THEN , or DO and LOOP)

This detection mechanism makes it impossible to compile some constructions allowed by
the ISO standard. You may disable this checking by NO-SECURITY and re-instate it by
DO-SECURITY . You can compile even combination of DO and BRANCH controls after WANT
-tricky-control-

‘ciforth ERROR # 20 : STACK UNBALANCE, STRUCTURE UNFINISHED?’

This error is reported by ?CSP . It detects stack unbalance between : and ; , or wherever
you choose to use the words !'CSP and ?CSP . This means there is an error in the compiled
code. This message is given also if during compilation you try to use data that is put on
the stack before : . Instead of

‘<generatedata> : name LITERAL ;’

use

‘<generatedata> : name [_ SWAP] LITERAL ; DROP’

to keep the stack at the same depth.

‘ciforth ERROR # 21 : IN PROTECTED DICTIONARY’

The word you are trying to FORGET is below the FENCE , such that forgetting is not allowed.
‘ciforth ERROR # 22 : USE ONLY WHEN LOADING’

This error is reported by ?LOAD . You try to use a word that only works while loading from
the BLOCK-FILE , in casu --> .

‘ciforth ERROR # 23 : OFF CURRENT EDITING SCREEN’

‘ciforth ERROR # 24 : (WARNING) NOT PRESENT, THOUGH WANTED’ This error is reported by
WANTED . The word you required, has been looked up in the index lines. It was not found
in the index lines, or it was a dummy item, that only marks the screen to be loaded, e.g.
‘~scripting-’. In the latter case it can be safely ignored. This must be a warning only,
because compilation can still succeed if the word is supplied by other means, in particular
conditional compilation.

‘ciforth ERROR # 25 : LIST EXPECTS DECIMAL’

This message is used by a redefined LIST , to prevent getting the wrong screen.
‘ciforth ERROR # 33 : INPUT EXHAUSTED’

A parsing word doesn’t find the input it expects, even after REFILL .

‘ciforth ERROR # 40 : REGRESSION TEST FAILS, STACK DEPTH ERROR’

This message is detected by REGRESS . It means that the number of stack items left by the
test, doesn’t agree with the number of items in the result specification.

Chapter 7: Errors 53

e ‘ciforth ERROR # 41 : REGRESSION TEST FAILS, RETURN VALUE ERROR’
This message is detected by REGRESS . It means that the stack items left by the test, don’t
agree with items in the result specification.
e ‘ciforth ERROR # 42 : REGRESSION TEST MALL-FORMED, SECOND PART MISSING’
This message is given by REGRESS if there is no S: part.
e ‘ciforth ERROR # 48 : NO BUFFER COULD BE FREED, ALL LOCKED’
While a block is in use by THRU , it is locked , which means that it must stay in memory.

In addition blocks can be locked explicitly by LOCK . If a free block is needed, and there is
no block that can be written back to the mass storage (disk or flash), you get this error.

e ‘ciforth ERROR # 49 : EXECUTION OF EXTERNAL PROGRAM FAILED’ The word SYSTEM de-
tected an error while trying to execute an external program.

e ‘ciforth ERROR # 50 : NOT ENOUGH MEMORY FOR ALLOCATE’ The dynamic memory alloca-
tion could not allocate a buffer of the size wanted, because there is not enough consecutive
memory available. Fragmentation can cause this to happen while there is more than that
size available in total. This is detected by ALLOCATE or RESIZE .

e ‘ciforth ERROR # 51 : UNKNOWN FORMAT IDENTIFIER’ This error is detected by the FORMAT
wordset. The word following 7 in a format string, is not known. This means that it is not
present in the namespace FORMAT-WID .

e ‘ciforth ERROR # 52 : CANNOT HEAPIFY BUFFER’ This error is detected by the ALLOCATE
wordset. The buffer you want to use as or add to the heap space, must be outside already
existing heap space. This error results if you violate this rule. It may also result from
corruption of the allocation system, such a writing outside designated space.

See Section 9.29.2 [ASSEMBLER], page 137,, for errors generated by the assembler. In
general these have numbers that are higher than the general errors.

95

8 Documentation summary

The homepage of this Forth is
http://home.hcenet.nl/a.w.m.van.der.horst /lina.html

It is based on a generic system available via
http://home.hcenet.nl/a.w.m.van.der.horst /ciforth.html

The implementation of this Forth is indebted to FIGForth
http://home.hcenet.nl/a.w.m.van.der.horst /fig-Forth.html

A tutorial in English (and Dutch) is to be found at
https://forth.hce.nl/w/Ciforth/Ciforth?setlang=en

The most important general Forth site is
http://www.forth.org
with links to all Forth chapters and commercial and free Forth implementation.

Like all modern languages the Forth ISO standard is available on the web

http://www.taygeta.com/forth/dpans.htm
The official, printed manual by the Amercian National Standards Institute commands a stiff
price.

In print
e Starting forth by Leo Brodie

A classic still worth reading, despite its age. You must adapt the examples in order to use
it with an ISO Forth, A modernized version is available online at
http://www.forth.com/starting-forth/

e Going Forth by Leo Brodie
More timeless, maybe even more important, about the filosofy of Forth.

e The German Fig Chapter has a publication: Vierte Dimension.

For historic interest the following is copied from the FIG documentation 1978.

Caltech FORTH Manual, an advanced manual with internal details of Forth. Has Some
implementation peculiarities. The Caltech Book Store, Pasadena, CA.

Kitt Peak Forth Primer, edited by the Forth Interest Group, P. O. Box 1105, San Carlos,
CA 94070.

microFORTH Primer, Forth, Inc. 815 Manhattan Ave. Manhattan Beach, CA 90266

Forth Dimensions, newsletter of the Forth Interest Group, $5.00 for 6 issues including mem-

bership. F-I-G. P.O. Box 1105, San Carlos, CA. 94070

57

9 Glossary

Wherever it says single precision number or cell 64 bits is meant. Wherever it says double or
“double precision number” a 128 bits number is meant.

The first line of each entry shows a symbolic description of the action of the proceedure on the
parameter stack. The symbols indicate the order in which input parameters have been placed
on the stack. The dashes “—” indicate the execution point; any parameters left on the stack
are listed. In this notation, the top of the stack is to the right. Any symbol may be followed by
a number to indicate different data items passed to or from a Forth word.

The symbols include:

‘addr’ memory address

‘b’ 8 bit byte (the remaining bits are zero)

‘c’ 7 bit ascii character (the remaining bits are zero)

‘&’ 128 bit signed double integer: most significant portion with sign on top of stack
‘dea’ A dictionary entry address , the basic address of a Forth word from which all its

properties can be found.
‘£ logical flag : zero is interpreted as false, non-zero as true
‘faraddr’ a <selector:address> pair
1 Forth flag , a well-formed logical flag, O=false, -1=true.
‘false’ a false Forth flag : 0

(3]

n 64 bit signed integer number; it is also used for a 64 -bit entity where it is irrelevant
what number it represents

sc a string constant , i.e. two cells, an address and a length; length characters are
present, starting at the address (they must not be changed)

‘true’ a true Forth flag : -1.
‘u’ 64 -bit unsigned integer, also used whenever a cell is considered as a bitset.
‘ud’ 128 -bit unsigned double integer: most significant portion on top of stack

The capital letters on the right show definition characteristics:

‘<’ May only be used within a colon definition.

‘E Intended for execution only.

‘FIG’ Belongs to the FIG model

‘T Has immediate bit set. Will execute even when compiling.

‘IS0’ Belongs to ISO standard

‘NFIG’ Word belongs to FIG standard, but the implementation is not quite conforming.
‘NISO’ Word belongs to ISO standard, but the implementation is not quite conforming.
‘P’ Word is a prefix, interprets and optionally compiles remainder of word.

‘WANT’ Word is not in the kernel, use the WANT to load it from the library. These words are

maintained and tested, will only be changed with notice and an upgrade pad will
be supplied.

‘o A user variable.

58 ciforth manual

Where there is mention of a standard or a model, it means that the word actually complies
to the standard or the model, not that some word of that name is present in that standard.
Words marked with ‘IS0,FIG’ will behave identically over all but the whole spectra of Forth’s.

Unless otherwise noted, all references to numbers are for 64 -bit signed integers. For 128 -bit
signed numbers, the most significant part (with the sign) is on top.

All arithmetic is implicitly 64 -bit signed integer math, with error and under-flow indication
unspecified.

A nil pointer is an address containing zero. This indicates an invalid address.

The Forth words are divided into wordset s, that contain words that logically belong together.
Fach wordset has a separate section with a description. The following rules take precedence over
any wordset a word may logically belong to.

e A defining word — one that adds to the dictionary — is present in the wordset ‘DEFINING’.
e A denotation word — one that has the prefix bit set — is present in the wordset ‘DENOTATIONS’.

e An environmental query word — one that is understood by 7ENVIRONMENT — is present in
the wordset ‘ENVIRONMENTS’.

9.1 BLOCKS

The block mechanism connects to the Forth system a single background storage divided in
numbered blocks . The wordset ‘BLOCKS’ contains words to input and output to this mass
storage. In this ciforth blocks reside in a file, by default named forth.lab. . Most blocks are
used for the ‘SCREEN’ facility, where each block contains source code.

9.1.1 #BUFF

Name: #BUFF
Stackeffect: — n
Attributes:

Description: A constant that leaves the number of block buffers. Because a buffer that is being
interpreted is locked in memory, this is also a limit to the nesting depth of blocks loading other
blocks.

See also: ‘BLOCK’ ‘THRU’ ‘LOAD’ ‘LOCK’

9.1.2 —>

Name: -->
No stackeffect
Attributes: I, WANT

Description: Continue interpretation with the next disc screen. If the current input source is
not from a block, a crash will ensue. If this new screen is left by throw of an exception, the
screen may remain locked until a QUIT , or any uncaught exception.

See also: ‘LOCK’ ‘CATCH’ ‘LOAD’

9.1.3 ?DISK-ERROR

Name: ?DISK-ERROR
Stackeffect: n—
Attributes:

Description: Interpret ‘n’ as the status of a disk i/o call and signal an error if it contains an
error condition. It is only used to signal errors related to accessing the BLOCK-FILE .

See also: ‘BLOCK-FILE’ ‘BLOCK-HANDLE’ ‘BLOCK-INIT’ ‘BLOCK-EXIT’

Chapter 9: Glossary 59

9.1.4 B/BUF
Name: B/BUF
Stackeffect: — n
Attributes:

Description: This constant leaves the number of bytes per disc buffer, the byte count read from
disc by BLOCK . The ISO standard fixes this to 1024.

See also: ‘(BUFFER)’

9.1.5 BLOCK-EXIT
Name: BLOCK-EXIT
Stackeffect: —

Attributes:

Description: A block file must have been opened by BLOCK-INIT . All blocks are unlocked.
Any changed blocks are written back to mass storage. Close the currently open block file
BLOCK-HANDLE , such that the mass storage words no longer work, and will result in error
messages. If error messages were fetched from disk, they no longer are.

See also: ‘BLOCK’ ‘LIST’ ‘LOAD’ ‘DISK-ERROR’ ‘WARNING’

9.1.6 BLOCK-FILE
Name: BLOCK-FILE
Stackeffect: —addr
Attributes:

Description: Leave the address ‘addr’ of a counted string, the name of a library file in which
blocks are (to be) allocated. The name may contain a path and be at most 252 characters long.
The default name is forth.lab . This name is typically changed during installation and is used
by the BLOCK-INIT command.

See also: ‘BLOCK-HANDLE’ ‘BLOCK-INIT’ ‘LIST’ ‘LOAD’ ‘$@’

9.1.7 BLOCK-HANDLE
Name: BLOCK-HANDLE
Stackeffect: —n

Attributes:

Description: Leave a file handle in ‘n’ . If it is negative there is no block file open, otherwise the
handle is used by the system to access blocks.

See also: ‘BLOCK-FILE’ ‘BLOCK-INIT’ ‘BLOCK-EXIT’

9.1.8 BLOCK-INIT
Name: BLOCK-INIT
Stackeffect: n —
Attributes:

Description: Map the blocks on the block file BLOCK-FILE , i.e. the mass storage words refer to
the blocks in this file. The handle ‘BLOCK-HANDLE’ can be used to access it, with access code ‘n’
(2 for read and write). This command signals failure by a negative handle in BLOCK-HANDLE .
You must activate mnemonic error messages explicitly by setting WARNING .

See also: ‘BLOCK’ ‘LIST’ ‘LOAD’ ‘BLOCK-EXIT’ ‘OPEN-FILE’

60 ciforth manual

9.1.9 BLOCK-READ
Name: BLOCK-READ
Stackeffect: addr blk —
Attributes:

Description: The ciforth primitive for reading of blocks. ‘addr’ specifies the destination block
buffer, ‘blk’ is the sequential number of the referenced physical block BLOCK-READ determines
the location on mass storage, performs the read and throws an exception on errors.

See also: ‘BLOCK’ ‘DISK-ERROR’ ‘BLOCK-WRITE’ ‘BLOCK-INIT’

9.1.10 BLOCK-WRITE
Name: BLOCK-WRITE
Stackeffect: addr blk —
Attributes:

Description: The ciforth primitive for writing of blocks. ‘addr’ specifies the source or destination
block buffer, ‘blk’ is the sequential number of the referenced physical block. BLOCK-WRITE
determines the location on mass storage, performs the write and throws an exception on errors.

See also: ‘BLOCK’ ‘DISK-ERROR’ ‘BLOCK-READ’ ‘BLOCK-INIT’

9.1.11 BLOCK
Name: BLOCK
Stackeffect: n — addr
Attributes: ISO,FIG

Description: Leave ‘addr’, the disc buffer containing block ‘n’, which is the physical disk block
‘OFFSET+n’. The address left is the field within the buffer to be used for data storage. If the
block is not already in memory, it is transferred from disc to a new buffer allocated by (BUFFER)
. Blocks are generally used to contain source code to be interpreted by LOAD . They can be
equally useful to contain other data, e.g. for implementing a database.

See also: ‘(BUFFER)’ ‘BLOCK-READ’ ‘BLOCK-WRITE’ ‘OFFSET’ ‘UPDATE’ ‘FLUSH’ ‘LOAD’

9.1.12 DISK-ERROR
Name: DISK-ERROR
Stackeffect: — addr
Attributes:

Description:

See also: ‘BLOCK’

9.1.13 EMPTY-BUFFERS
Name: EMPTY-BUFFERS

No stackeffect

Attributes: ISO,FIG

Description: Mark all block-buffers as empty. Updated blocks are not written to the disc. This
is an initialization proceedure before first use of the disc. The usage as an “undo” is infeasible
in ciforth.

See also: ‘FLUSH’ ‘BLOCK’ ‘SCREEN’ ‘UPDATE’

Chapter 9: Glossary 61

9.1.14 UPDATE
Name: UPDATE

No stackeffect
Attributes: ISO,FIG

Description: Marks the most recently referenced block (pointed to by _PREV) as altered. The
block will subsequently be transferred automatically to disc should its buffer be required for
storage of a different block. In fact the block is transferred to disk immediately.

See also: ‘BLOCK’ ‘EMPTY-BUFFERS’

9.1.15 (BUFFER)
Name: (BUFFER)
Stackeffect: n — addr
Attributes:

Description: Return the addres ‘addr’ of a buffer assigned to identification ‘n’ , probably a block
number. Block numbers are positive, so a negative value can be used for a buffer that is used
for some other purpose. The buffer layout is as follows: a cell with ‘n’, a cell with the status,
and the content of length B/BUF' . The status is negative for locked. The l.s.b. gives zero for
free and one for valid data. The block is not read from the disc. The buffer is either one that
was already assigned, or else a free buffer. If there is none free, some non-locked buffer is freed.
The contents of that buffer is written to the disc, if it was marked as updated. In ciforth this
will never happen, because updated blocks are written immediately. In ciforth blocks can be
locked, and locked buffers are never freed by (BUFFER) . An update flag would somehow be
multiplexed with the lock count, but it is not needed in this ciforth. If all buffers were locked,
(BUFFER) throws exception 48.

See also: ‘BLOCK’ ‘_PREV’ ‘#BUFF’ ‘LOCK’ ‘UNLOCK’

9.1.16 +BUF

Name: +BUF

Stackeffect: addrl — addr2 ff
Attributes: FIG

Description: Advance the disc buffer address ‘addr1’ to the address of the next buffer ‘addr2’ .
Boolean ‘ff’ is false when ‘addr2’ is the buffer presently pointed to by variable _PREV .

See also: ‘BLOCK’

9.1.17 BLOCK-SEEK
Name: BLOCK-SEEK
Stackeffect: n—

Attributes:

Description: A block file must have been opened by BLOCK-INIT . Position the file pointer at
block ‘n’ in behalf of subsequent reads and writes.

See also: ‘BLOCK’ ‘LIST’ ‘LOAD’ ‘BLOCK-READ’ ‘BLOCK-WRITE’

9.1.18 FLUSH
Name: FLUSH
No stackeffect
Attributes: ISO,FIG

62 ciforth manual

Description: Make sure that the content of all UPDATE d block buffers has been transferred to
disk. The buffers are no longer associated with a block and their content is no longer available. In
ciforth no transfer takes place, because mass storage is updated automatically in the background.

See also: ‘EMPTY-BUFFERS’ ‘BLOCK’

9.1.19 OFFSET
Name: OFFSET
Stackeffect: — addr
Attributes: U

Description: A user variable which contains a block offset. The contents of OFFSET is added to
the argument for BLOCK before reading or writing blocks. In this way a part of disc drives can
be reserved for boot-code.

See also: ‘BLOCK’ ‘MESSAGE’ ‘BLOCK-READ’ ‘BLOCK-WRITE’

9.1.20 _FIRST

Name: _FIRST

Stackeffect: — addrl

Attributes:

Description: A constant that leaves the address of the block buffer lowest in memory.
See also: ‘BLOCK’ ‘_LIMIT’

9.1.21 _LIMIT
Name: _LIMIT
Stackeffect: — addrl
Attributes:

Description: A constant leaving the address just above the highest memory available for a disc
buffer. Actually this is the highest system memory.

See also: ‘BLOCK’ ‘_FIRST’

9.1.22 _PREV
Name: _PREV
Stackeffect: — addr
Attributes:

Description: A variable containing the address of the disc buffer (not its content field!) most
recently referenced. The UPDATE command marks this buffer to be written to disc.

See also: ‘(BUFFER)’

9.2 COMPILING

The wordset ‘COMPILING’ contains words that compile words and numbers. They need special
attention because these words in general execute during compilation See Section 9.6.14 [IMME-
DIATE], page 81, . Numbers are compiled in line , behind a word that fetches them.

9.2.1 DLITERAL

Name: DLITERAL

Stackeffect: d — d (executing) d — (compiling)
Attributes: I

Chapter 9: Glossary 63

Description: If compiling, compile a stack double number into a literal. Later execution of the
definition containing the literal will push it to the stack. If executing, the number will just
remain on the stack.

See also: ‘LITERAL’ ‘LIT’ ‘STATE’

9.2.2 LITERAL

Name: LITERAL

Stackeffect: n — n (executing) n — (compiling)
Attributes: ISO,I,C

Description: If compiling, then compile the stack value ‘n’ as a 64 bit literal. The intended use
is: ‘¢ xxx [calculate] LITERAL ;’ Compilation is suspended for the compile time calculation
of a value. Compilation is resumed and LITERAL compiles this value. Later execution of the
definition containing the literal will push it to the stack. If executing, the number will just
remain on the stack.

See also: ‘LIT’ ‘SDLITERAL’ ‘STATE’

9.2.3 POSTPONE
Name: POSTPONE

No stackeffect
Attributes: ISO.I,C

Description: Used in a colon-definition in the form:

[: xxx POSTPONE SOME-WORD J

POSTPONE will postpone the compilation behaviour of ‘SOME-WORD’ to the definition being
compiled. If ‘SOME-WORD’ is an immediate word this is similar to ‘ [COMPILE] SOME-WORD’.

See also: ‘[COMPILE]’

9.2.4 [COMPILE]
Name: [COMPILE]

No stackeffect
Attributes: ISO,I,C

Description: Used in a colon-definition in the form:

[: XXX ... [COMPILE] IF ... ; }

[COMPILE] will force the compilation of an immediate definition, that would otherwise execute
during compilation. The above example will perform IF when ‘xxx’ executes, rather than
introducing conditional code in ‘xxx’ itself.

See also: ‘POSTPONE’

9.2.5 LIT
Name: LIT
Stackeffect: — n
Attributes: FIG,C

64 ciforth manual

Description: Within a colon-definition, LIT is compiled followed by a 64 bit literal number given
during compilation. Later execution of LIT causes the contents of this next dictionary cell to be
pushed to the stack. This word is compiled by LITERAL .

See also: ‘LITERAL’

9.2.6 SDLITERAL

Name: SDLITERAL

Stackeffect: d — s/d (executing) / d — (compiling)
Attributes: 1

Description: If compiling, compile a stack double number into a literal or double literal, de-
pending on whether DPL contains a nil pointer or points into the input. Later execution of the
definition containing the literal will push it to the stack. If executing, the number will remain
on the stack.

See also: ‘LITERAL’ ‘DLITERAL’ ‘STATE’

9.3 CONTROL

The wordset ‘CONTROL’ contains words that influence the control flow of a program, i.e. the
sequence in which commands are executed in compiled words. With control words you can have
actions performed repeatedly, or depending on conditions.

9.3.1 +LOOP

Name: +L00P

Stackeffect: n1 — (run) / addr n2 — (compile)
Attributes: ISO,I,C

Description: Used in a colon-definition in the form:

[DO ... nl +L00OP J

At run-time, +L0O0P selectively controls branching back to the corresponding DO based on ‘n1’
, the loop index and the loop limit. The signed increment ‘nl’ is added to the index and the
total compared to the limit. The branch back to DO occurs until the new index is equal to or
greater than the limit (‘n1>0’), or until the new index is equal to or less than the limit (‘n1<0’).
Negative increments cannot be combined with 7D0 , this deviates from the ISO standard. Upon
exiting the loop, the parameters are discarded and execution continues ahead.

At compile-time, LOOP compiles code to the above effect, existing of (+LO0P) OBRANCH UNLOOP

and uses ‘addr’ , left on the stack by DO , to calculate the branch offset from HERE .
‘n2’ is used for compile time error checking.
See also: ‘LOOP’

9.3.2 7DO
Name: ?D0

Stackeffect: nl n2 — (execute) addr n — (compile)
Attributes: NISO,I,C

Description: Occurs in a colon-definition in form:

Chapter 9: Glossary 65

{?DO ... LOOP }

It behaves like DO , with the exception that if ‘n1’ is less than ‘n2’ the loop body is not
executed. This is intended to suppress the unwanted behaviour of looping through the whole
number range, ciforth deviates from ISO in that it also suppresses the unwanted behaviour of
looping through almost the whole number range for an input of e.g.

& J

However, negative increments are made impossible for forthword(?DO) this way.
See also: ‘DO’ ‘I’ ‘LOOP’ ‘+LOOP’ ‘LEAVE’

9.3.3 AGAIN

Name: AGAIN

Stackeffect: addr n — (compiling)
Attributes: ISO,FIG,I,C

Description: Used in a colon-definition in the form:

EE%EGIN ... AGAIN J

At run-time, AGAIN forces execution to return to the corresponding BEGIN . There is no
effect on the stack. Execution cannot leave this loop except for EXIT . At compile time, AGAIN
compiles BRANCH with an offset from HERE to addr. ‘n’ is used for compile-time error checking.

See also: ‘BEGIN’

9.3.4 BEGIN
Name: BEGIN

Stackeffect: — addr n (compiling)
Attributes: ISO,FIG,I

Description: Occurs in a colon-definition in one of the forms:

EE%EGIN ... UNTIL J
EBEGIN ... AGAIN }
[BEGIN ... WHILE ... REPEAT J

At run-time, BEGIN marks the start of a sequence that may be repetitively executed. It serves
as a return point from the corresponding UNTIL , AGAIN or REPEAT . When executing UNTIL
a return to BEGIN will occur if the top of the stack is false; for AGAIN and REPEAT a return to
BEGIN always occurs.

At compile time BEGIN leaves its return address and ‘n’ for compiler error checking.
See also: ‘(BACK’ ‘DO’

66 ciforth manual

9.3.5 CO
Name: CO

No stackeffect
Attributes:

Description: Return to the caller, suspending interpretation of the current definition, such that
when the caller exits, this definition is resumed. The return stack must not be engaged, such as
between >R and R> , or DO and LOOP .

See also: ‘EXIT’

9.3.6 DO

Name: DO

Stackeffect: nl n2 — (execute) addr n — (compile)
Attributes: ISO,FIG,I,C

Description: Occurs in a colon-definition in form: ‘DO ... LOOP’ At run time, DO begins a
sequence with repetitive execution controlled by a loop limit ‘nl’ and an index with initial
value ‘n2’ . DO removes these from the stack. Upon reaching LOOP the index is incremented by
one. Until the new index equals or exceeds the limit, execution loops back to just after DO ;
otherwise the loop parameters are discarded and execution continues ahead. Both ‘n1’ and ‘n2’
are determined at run-time and may be the result of other operations. Within a loop I will copy
the current value of the index to the stack. With +L0O0P it can be used with other increments
than one.

It deviates from the ISO standard in that that if ‘n1’ is equal to ‘n2’ the loop is never executed
even once.

When compiling within the colon definition, DO compiles (DO) and leaves the following address
‘addr’ and ‘n’ for later error checking.

See also: ‘I’ ‘LOOP’ ‘4L0O0P’ ‘LEAVE’

9.3.7 ELSE

Name: ELSE

Stackeffect: addrl nl — addr2 n2 (compiling)
Attributes: ISO,FIG,I,C

Description: Occurs within a colon-definition in the form:

E[F...ELSE...THEN }

At run-time, ELSE executes after the true part following IF . ELSE forces execution to skip
over the following false part and resumes execution after the THEN . It has no stack effect.

At compile-time ELSE compiles BRANCH and reserves a places for a branch offset, leaving its
address ‘addr2’ and ‘n2’ for error testing. ELSE also resolves the pending forward branch from
IF by calculating the offset from ‘addrl’ to HERE and storing at ‘addrl’ .

See also: ‘(FORWARD’ ‘FORWARD)’ ‘BRANCH’

9.3.8 EXIT
Name: EXIT
No stackeffect
Attributes: ISO

Chapter 9: Glossary 67

Description: Stop interpretation of the current definition. The return stack must not be engaged,
such as between >R and R> , or DO and LOOP . In ciforth it can also be used to terminate
interpretation from a string, block or file, or a line from the current input stream.

See also: ‘(;)’

9.3.9 IF

Name: IF
Stackeffect: f — (run-time) / — addr n (compile)
Attributes: ISO,FIG,I,C

Description: Occurs in a colon-definition in form:

[IF (tp) ... THEN }

or

[IF (tp) ... ELSE (fp) ... THEN

At run-time, IF selects execution based on a boolean flag. If ‘£’ is true (non-zero), execution
continues ahead thru the true part. If ‘f’ is false (zero), execution skips till just after ELSE to
execute the false part. After either part, execution resumes after THEN . ELSE and its false part
are optional; if missing, false execution skips to just after THEN .

At compile-time IF compiles OBRANCH and reserves space for an offset at ‘addr’ . ‘addr’ and
‘n’ are used later for resolution of the offset and error testing.

See also: ‘ (FORWARD’ ‘OBRANCH’
9.3.10 1

Name: I

Stackeffect: — n

Attributes: ISO,FIG,C

Description: Used within a do-loop to copy the loop index to the stack.
See also: ‘DO’ ‘LOOP’ ‘+LOOP’

9.3.11 J

Name: J
Stackeffect: — n
Attributes: ISO,FIG,C

Description: Used within a nested do-loop to copy the loop index of the outer do-loop to the
stack.

See also: ‘DO’ ‘LOOP’ ‘+L0O0OP’

9.3.12 LEAVE

Name: LEAVE
No stackeffect
Attributes: ISO

Description: Terminate a do-loop by branching to directly behind the end of a loop started by
DO or 7DO0 , so after the corresponding LOOP or +LOCP .

See also: ‘UNLOQOP’

68 ciforth manual

9.3.13 LOOP

Name: LOOP
Stackeffect: — (run) addr n — (compiling)
Attributes: ISO,I,C

Description: Occurs in a colon-definition in form:

[éo ... LOOP

At run-time, LOOP selectively controls branching back to the corresponding DO based on the
loop index and limit. The loop index is incremented by one and compared to the limit. The
branch back to DO occurs until the index equals or exceeds the limit; at that time, the parameters
are discarded and execution continues ahead.

At compile-time, LOOP compiles code to the above effect, existing of ONE (+LOOP) OBRANCH
UNLOOP

and uses ‘addr’ to calculate an offset to be used by ‘OBRANCH’ . ‘n’ is used for compile time
error checking.

See also: ‘+L0O0OP’

9.3.14 RECURSE

Name: RECURSE

Stackeffect: (varies)

Attributes: ISO

Description: Do a recursive call of the definition being compiled.

)

See also:

9.3.15 REPEAT

Name: REPEAT

Stackeffect: addrl nl addr2 n2— (compiling)
Attributes: ISO,FIG,I,C

Description: Used within a colon-definition in the form:

{%EGIN ... WHILE ... REPEAT

At run-time, REPEAT forces an unconditional branch back to just after the corresponding
BEGIN .

At compile-time, REPEAT compiles BRANCH and the offset from HERE to ‘addr2’ . Then it fills
in another branch offset at ‘addri1’ left there by WHILE . ‘n1 n2’ is used for error testing.

See also: ‘WHILE’

9.3.16 SKIP

Name: SKIP
No stackeffect
Attributes: C

Description: Skip over an area in memory, where the length is given in the next cell, then align.
This length doesn’t include the length cell, so it is compatible with $@ . Internal, used for nested
compilation and compiling strings.

See also: ‘BRANCH’

Chapter 9: Glossary

9.3.17 THEN

Name: THEN

Stackeffect: addr n — (compile)
Attributes: ISO,FIG,I,C

Description: Occurs in a colon-definition in form:

69

{IF ... THEN

[IF ... ELSE ... THEN

J

At run-time, THEN serves only as the destination of a forward branch from IF or ELSE . It
marks the conclusion of the conditional structure. At compile-time, THEN computes the forward

branch offset from ‘addr’ to HERE and stores it at ‘addr’ .

See also: ‘FORWARD)’ ‘IF’ ‘ELSE’

9.3.18 UNLOOP
Name: UNLOOP

No stackeffect
Attributes: ISO.I,C

‘n’ is used for error tests.

Description: Discard the loop parameters. Must be used when the regular end of the loop is
by-passed. That means it is not ended via LOOP +LO0P or LEAVE , but my means of EXIT or

unstructured branching. In this Forth the parameters are the address after the loop af .

See also: ‘DO’ ‘LEAVE’ ‘OBRANCH’ ‘ (FORWARD’

9.3.19 UNTIL
Name: UNTIL

Stackeffect: f — (run-time) / addr n — (compile)
Attributes: ISO,FIG,I,C

Description: Occurs within a colon-definition in the form:

{BEGIN ... UNTIL

J

At run-time, UNTIL controls the conditional branch back to the corresponding BEGIN . If f is

false, execution returns to just after BEGIN , otherwise execution continues ahead.

At compile-time, UNTIL compiles OBRANCH and an offset from HERE to addr. ‘n’ is used for

error tests.
See also: ‘BEGIN’

9.3.20 WHILE
Name: WHILE

Stackeffect: f — (run-time) / addrl nl — addr2 nl addrl n2 (compile-time)

Attributes: ISO,FIG,I,C

Description: Occurs in a colon-definition in the form: ‘BEGIN ... WHILE (tp) ... REPEAT At
run-time, WHILE selects conditional execution based on boolean flag ‘£’ . If ‘£’ is true (non-zero),

70 ciforth manual

WHILE continues execution of the true part thru to REPEAT , which then branches back to BEGIN
. If ‘£ is false (zero), execution skips to just after REPEAT , exiting the structure.

At compile time, WHILE compiles OBRANCH and tucks the target address ‘addr2’ under the
‘addri’ left there by BEGIN . The stack values will be resolved by REPEAT . ‘n1’ and ‘n2’ provide
checks for compiler security.

See also: ‘(FORWARD’ ‘BEGIN’

9.3.21 (+LOOP)
Name: (+L0O0OP)
Stackeffect: n —
Attributes: C

Description: The run-time proceedure compiled by +LO0P , which increments the loop index by
n and tests for loop completion.

See also: ‘+L0O0OP’

9.3.22 (,)
Name: (;)
No stackeffect
Attributes:

Description: This is a synonym for EXIT . It is the run-time word compiled at the end of a
colon-definition which returns execution to the calling proceedure. Stop interpretation of the
current definition. The return stack must not be engaged.

See also: ‘EXIT’

9.3.23 (?DO)

Name: (7D0)

No stackeffect

Attributes: C

Description: The run-time proceedure compiled by ?D0 which prepares the return stack, where
the looping bookkeeping is kept.

See also: ‘?DO’

9.3.24 (BACK
Name: (BACK
Stackeffect: — addr
Attributes:

Description: Start a backward branch by leaving the target address HERE into ‘addr’. Usage is
‘(BACK .. POSTPONE BRANCH BACK) ’

See also: ‘BACK)’ ‘BEGIN’ ‘DO’

9.3.25 (DO)
Name: (D0)
No stackeffect
Attributes: C

Description: The run-time proceedure compiled by DO which prepares the return stack, where
the looping bookkeeping is kept.
See also: ‘DO’ ‘UNLOOQP’

Chapter 9: Glossary 71

9.3.26 (FORWARD
Name: (FORWARD
Stackeffect: — addr
Attributes:

Description: Start a forward branch by allocating space for an offset, that must be backpatched
into ‘addr’. Usage is ‘POSTPONE BRANCH (FORWARD .. FORWARD) ’

See also: ‘IF’ ‘BRANCH’ ‘OBRANCH’

9.3.27 0OBRANCH
Name: OBRANCH

Stackeffect: £ —
Attributes: FIG,C

Description: The run-time proceedure to conditionally branch. If ‘£’ is false (zero), the following
in-line parameter is added to the interpretive pointer to branch ahead or back. Compiled by IF
, UNTIL , and WHILE .

See also: ‘BRANCH’ ‘ (FORWARD’ ‘(BACK)’ ‘SKIP ’

9.3.28 BACK)
Name: BACK)

Stackeffect: addr —
Attributes:

Description: Complete a backward branch by compiling an offset from HERE to ‘addr’, left there
by (BACK . Usage is ‘(BACK .. POSTPONE BRANCH BACK) ’

See also: ‘LOOP’ ‘UNTIL’

9.3.29 BRANCH
Name: BRANCH

No stackeffect
Attributes: FIG,C

Description: The run-time proceedure to unconditionally branch. An in-line offset is added
to the interpretive pointer ‘HIP’ to branch ahead or back. BRANCH is compiled by ELSE AGAIN
REPEAT .

See also: ‘OBRANCH’ ‘ (FORWARD’ ‘ (BACK ’

9.3.30 FORWARD)
Name: FORWARD)

Stackeffect: addr —
Attributes:

Description: Complete a forward branch by backpatching an offset from HERE into ‘addr’, left
there by (FORWARD . Usage is ‘POSTPONE BRANCH (FORWARD .. FORWARD) ’

See also: ‘LOOP’ ‘UNTIL’ ‘REPEAT’

72 ciforth manual

9.4 DEFINING

The wordset ‘DEFINING’ contains words that add new entries to the dictionary, or are related to
those words. A number of such defining word ’s are predefined, but there is also the possibility
to make new defining words, using CREATE and DOES> .

94.1 ;

Name: ;

No stackeffect

Attributes: ISO,FIG,I,C

Description: Terminate a colon-definition and stop further compilation. Compiles the run-time
G) .

See also:

9.4.2 CONSTANT
Name: CONSTANT
Stackeffect: n —
Attributes: ISO,FIG

Description: A defining word used in the form: ‘n’ CONSTANT ‘cccc’ to create word ‘ccecc’
where the content of its data field address is ‘n’ . When ‘cccc’ is later executed, it will push the
value of ‘n’ to the stack.

See also: ‘VARIABLE’ ‘>DFA’

9.4.3 CREATE
Name: CREATE

No stackeffect
Attributes: ISO

Description: A defining word used in the form: ‘CREATE cccc’ Later execution of ‘cccc’ returns
its data field , i.e. the value of HERE immediately after executing CREATE .

It can be the base of a new defining word if used in the form:

)

: CREATOR CREATE aaaa DOES> bbbb ;
CREATOR cccc

The second line has the effect of creating a word ‘cccc’ . Its datastructure is build by the
code ‘aaaa’ and when executing ‘cccc’ , its data field is pushed on the stack, then the code
‘bbbb’ is executed.

Space in this data field has yet to be allocated. The DFA (data field address) points to
the the execution action that can be changed by DOES> . ciforth is byte aligned, so no extra
measures are needed.

See also: ‘>BODY’ ‘DOES>’ “;CODE’ ‘ALLOT’ ¢,’ ‘>DFA’

9.4.4 DATA
Name: DATA

No stackeffect
Attributes:

Chapter 9: Glossary 73

Description: A defining word used in the form: ‘DATA cccc’ When DATA is executed, it creates
the definition ‘cccc’ whose data field address contains a pointer ‘n’ to HERE . This code is
typically followed by some data allocation word like ALLOT or , . DOES> must not be used with
‘ccec’.

When ‘cccc’ is later executed, this pointer ‘n’ is left on the stack, so that data can be
accessed.

See also: ‘VARIABLE’ ‘CREATE’ ‘>DFA’

9.4.5 DOES>

Name: DOES>

No stackeffect

Attributes: ISO,FIG

Description: A word which is used in combination with CREATE

to specify the run-time action within a high-level defining word. DOES> modifies the default
behaviour of the created word so as to execute the sequence of compiled word addresses following
DOES> . When the DOES> part executes it begins with the address of the data field of the word
on the stack. This allows interpretation using this area or its contents. Typical uses include the
Forth assembler, arrays and matrices, and compiler generation.

9.4.6 MAX-USER
Name: MAX-USER
Stackeffect: — addr
Attributes: U

Description: A user variable which contains the size of the area for user variables, that is in use.
It is measured in bytes from the start of the user area.

See also: ‘BLOCK’ ‘USER’ ‘MESSAGE’ ‘U0’

9.4.7 NAMESPACE

Name: NAMESPACE

No stackeffect

Attributes:

Description: A defining word used in the form: NAMESPACE ‘cccc’ to create a namespace defini-
tion ‘cccc’ . It will create a word list in the ISO sense. Subsequent use of ‘cccc’ will push this
word list (the word list associated with ‘cccc’) to the top of the search order in CONTEXT . So

it will be searched first by INTERPRET . A word create by NAMESPACE is not immediate. This is
also different among Forth implementations.

A namespace ’s data content field contains at first the dovoc pointer (like for any DOES> word)
, then follows its body. The body contains the namespace ("vocabulary") link field address (
VLFA). The VLFA points to the VLFA of the next namespace or a nil pointer for the end.
Then follows a dummy dea that serves as word list identifier or WID . Executing the namespace
means pushing its WID on top of the CONTEXT order. In ciforth when there can be at most 16
word list s in the search order, the oldest one gets lost.

See also: ‘ALSO’ ‘VOC-LINK’ ‘DEFINITIONS’ ‘FOR-VOCS’ ‘>WID’

9.4.8 USER
Name: USER
Stackeffect: n —

74 ciforth manual

Attributes: ISO

Description: A defining word used in the form: ‘n USER cccc’ which creates a user variable
‘cccc’ . The data field of ‘cccc’ contains ‘n’ as a byte offset relative to the user pointer register
‘UP’ for this user variable. When ‘cccc’ is later executed, it places the sum of its offset and the
user area base address on the stack as the storage address of that particular variable. In this
ciforth ‘UP’ is coupled to the return stack. This means that with a switch of the return stack,
‘UP’ is switched also automatically. CONTEXT is the last user variable at offset 38 CELLS, such
that new user variables may be allocated using offsets of 38+16 CELLS and up. It is best to
do ‘MAX-USER @ DUP USER cccc CELL+ MAX-USER ! ’ reflecting the current allocation in the user
area.

See also: ‘VARIABLE’ ‘+0RIGIN’ ‘CONTEXT’ ‘>DFA’

9.4.9 VARIABLE
Name: VARIABLE

No stackeffect
Attributes: ISO,FIG

Description: A defining word used in the form: ‘VARIABLE cccc’ When VARIABLE is executed, it
creates the definition ‘cccc’ whose data field address contains a pointer ‘n’ to a data location,
that can contain one cell. When ‘cccc’ is later executed, this pointer ‘n’ is left on the stack, so
that a fetch or store may access this location.

See also: ‘USER’ ‘CONSTANT’ ‘>DFA’ ‘DATA’

9.4.10 WORDLIST
Name: WORDLIST
Stackeffect: — wid
Attributes: ISO

Description: This words creates an empty wordlist which is a single header structure dea that
serves as a word list identifier or WID in the sense of the ISO standard. Definitions will be
added to it after it has been copied to CURRENT . This handle can be placed in the top of the
search order CONTEXT and the wordlist will be searched. This word underlies NAMESPACE , there
is no VLFA .

A wid’s significant fields are the flag field and the link field. The flag field indicates that it is
dummy, i.e. not intended to be executed. The link field address contains the dea of the latest
word of the wordlist or a nil pointer if empty. The namefield points to an empty string

See also: ‘NAMESPACE’ ‘ALSQ’ ‘>FFA’ ‘>LFA’ ‘FOR-WORDS’

9.4.11 colon
Name: colon

No stackeffect
Attributes: ISO,FIG,E

Description: Used in the form called a colon-definition:

(e)

Creates a dictionary entry defining ‘cccc’ as equivalent to the following sequence of Forth
word definitions ’...” until the next ’;’ or ’;CODE’ . The word is added as the latest into
the CURRENT word list. The compiling process is done by the text interpreter as long as STATE

Chapter 9: Glossary 75

is non-zero. Words with the immediate bit set, attribute ‘I’, are executed rather than being
compiled.

See also: ‘(CREATE)’

9.4.12 (;CODE)
Name: (;CODE)

No stackeffect
Attributes: WANT,C

Description: The run-time proceedure, compiled by ;CODE , that rewrites the code field of the
most recently defined word to point to the following machine code sequence. It is used after
CREATE instead of DOES> if the code following is assembler code instead of high level code.

See also: ‘;CODE’

9.4.13 (CREATE)
Name: (CREATE)
Stackeffect: sc —
Attributes:

Description: This is the basis for all defining words, including those which lack a data field in
the ISO sense: : USER VARIABLE

NAMESPACE CONSTANT DATA . It creates a header with name ‘sc’ in the dictionary and links
it into the CURRENT word list.

See also: ‘HEADER’ ‘LINK’ ‘CREATE’

9.4.14 ;CODE

Name: ;CODE

No stackeffect

Attributes: WANT,ISO,FIG,I,C

Description: Used in the form: ‘: cccc CREATE ;CODE assembly mnemonics ’ Stop compi-

lation and terminate a new defining word ‘cccc’ by compiling (;CODE) . Set ASSEMBLER to the
top of the search order order. Start assembling to machine code the following mnemonics.

When ‘cccc’ later executes in the form: ‘cccc nnnn’ the word ‘nnnn’ will be created with
its execution proceedure given by the machine code following ‘cccc’ . That is, when ‘nnnn’ is
executed, it does so by jumping to the code after ‘nnnn’ . Because of intimate relation to the
assembler, it is present in loadable form in the screens file forth.lab . Machine code must end
in NEXT also available with the assembler.

See also: ‘(;CODE)’ ‘(CREATE)’

9.4.15 HEADER
Name: HEADER
Stackeffect: sc — dea
Attributes:

Description: Create a dictionary entry structure for the word ‘sc’ and returns its address into
‘dea’. A pointer to each of its fields is called a "field address" for code data flag line name source
extra. In particular that a data field address is not a data field

in the ISO sense. HEADER initializes the code field addres and data field address to contain a
same pointer to the area owned by this header, i.e. immediately following the completed header
as appropriate for a low level (assembler) definition. The flag and link fields are initialised to

76 ciforth manual

zero , so not HIDDEN . The name ‘sc’ is laid down in the dictionary before the header and filled
in into the name field. The source field is filled in to best knowledge.

See also: ‘(CREATE)’ ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’ ‘>SFA’ ‘>XFA’ ‘LINK’

9.4.16 LINK
Name: LINK

Stackeffect: dea wid —
Attributes:

Description: Links the Forth word represented by ‘dea’ into the wordlist represented by ‘wid’ as
the latest entry. Alternatively, consider ‘wid’ as an other ‘dea2’. Link ‘dea’ between the ‘dea2’
and its successor in the linked list.

See also: ‘HEADER’ ‘ (CREATE)’

9.5 DENOTATIONS

The wordset ‘DENOTATIONS’ contains prefixes (mostly one letter words) that introduce a deno-
tation , i.e. a generalisation of NUMBER . PREFIX turns the latest definition into a prefix, similar
to IMMEDIATE . If a word starting with the prefix is looked up in the dictionary, the prefix is
found and executed. Prefix words parse input and leave a constant (number, char or string) on
the stack, or compile such constant, depending on STATE . For a kernel system it is guaranteed
that they reside in the minimum search order wordlist, associated with the namespace ONLY .
To make a distinction with the same words in other wordlists, the names of denotations are
prepended with “Prefix_” in the documentation. Actual names consists of the one character fol-
lowing “Prefix_”. Apart from Prefix_0 , ONLY contains entries for all hex digits 1...9 and A...F.
Like NUMBER always did, all denotations behave identical in interpret and compile mode and
they are not supposed to be postponed. The use of prefixes for other purposes than denotations
require great care.

9.5.1 Prefix_"

Name: Prefix_"
Stackeffect: — sc
Attributes: I,P

Description: Parse a " delimited string and leave it on the stack as a stringconstant , i.e. an
address and a length. A " can be embedded in a string by doubling it. The string is permanent
and takes dictionary space. The cell below the address contains the length, so ‘DROP 1 CELLS -
" can be used as a single cell reference. This is a denotation: during compilation this behaviour
is compiled.

9.5.2 Prefix_&
Name: Prefix_&
Stackeffect: — c
Attributes: I,P

Description: Leave ‘c’ the non blank char that follows. Skip another blank character. This is a
denotation: during compilation this behaviour is compiled.

(~)

See also:

Chapter 9: Glossary 7

9.5.3 Prefix_+

Name: Prefix_+

Stackeffect: — s/d

Attributes: I,P

Description: A prefix that handles numbers that start with + .
See also: ‘NUMBER’ ‘(NUMBER)’ ‘7’ ‘B’

9.5.4 Prefix_-

Name: Prefix_-

Stackeffect: — s/d

Attributes: I,P

Description: A prefix that handles numbers that start with - .
See also: ‘NUMBER’ ‘(NUMBER)’ ‘7’ ‘B’

9.5.5 Prefix_0
Name: Prefix_0
Stackeffect: — s/d
Attributes: I,P

Description: A prefix that handles numbers that start with 0 . Similar words are present for all
decimal and hex digits. ISO compatibility ony requires that denotators for decimal digits are
present, one can always use a leading zero.

See also: ‘NUMBER’ ‘(NUMBER)’ ‘B’ ‘7’

9.5.6 Prefix_7
Name: Prefix_7
Stackeffect: — s/d
Attributes: I,P

Description: A prefix that handles numbers that start with 7. Similar words are present for all
decimal and hex digits.

See also: ‘NUMBER’ ‘(NUMBER)’ ‘0’ ‘B’

9.5.7 Prefix_B
Name: Prefix_B
Stackeffect: — s/d
Attributes: I,P

Description: A prefix that handles numbers that start with B . Similar words are present for all
decimal and hex digits.

See also: ‘NUMBER’ ‘ (NUMBER)’ ‘0’ ‘7’

9.5.8 Prefix_TICK
Name: Prefix_TICK
Stackeffect: — addr
Attributes: I,P

Description: Used in the form:

78 ciforth manual

{’ nnnn

In interpret mode it leaves the execution token

(equivalent to the dea dictionary entry address) of dictionary word ‘nnnn’. If the word is not
found after a search of the search order an appropriate error message is given. In compile mode it
finds the same address, then compiles it as a literal. It is recommended that one never compiles
or postpones it. (Use a combination of NAME and FOUND or any form of explicit parsing and
searching instead.) Furthermore it is recommended that for non-portable code ’ is used in its
denotation form without the space. Note that if you separate ’ by a space, the ISO-conforming
version of ’ is found.

See also: ‘HEADER’ ‘CONTEXT’ ‘>’ ‘[*]’ ‘PRESENT’ ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’

9.5.9 Prefix_~

-~

Name: Prefix_
Stackeffect: — b
Attributes: I,P

Description: Leave ‘b’ the control character value of the char that follows i.e. ‘"A’ results in 1 and

so on. Skip another blank character. This is a denotation: during compilation this behaviour is
compiled.

See also: ‘&’

9.6 DICTIONARY

The wordset ‘DICTIONARY’ contains words that at a lower level than the wordset ‘DEFINING’
concern the memory area that is allocated to the dictionary. They may add data to the dictionary
at the expense of the free space, one cell or one byte at a time, or allocate a buffer at once. The
dictionary space may also be shrunk, and the words that were there are lost. The dictionary
entry address or dea represents a word. It is the lowest address of a record with fields. Words
to access those fields also belong to this wordset.

9.6.1 ’ (This addition because texinfo won’t accept a single quote)
Name: °

Stackeffect: — addr

Attributes: ISO,FIG

Description: Used in the form:

[’ nnnn

It leaves the execution token (equivalent to the dea dictionary entry address) of dictionary
word ‘nnnn’. If the word is not found after a search of the search order an appropriate error
message is given. If compiled the searching is done while the word being compiled is executed.
Because this is so confusing, it is recommended that one never compiles or postpones * . (Use
a combination of NAME and FOUND or any form of explicit parsing and searching instead.) Fur-
thermore it is recommended that for non-portable code ’ is used in its denotation form without
the space.

See also: ‘[’]’ ‘FOUND’ ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’ ‘>SFA’ ‘>XFA’

Chapter 9: Glossary 79

9.6.2 ,

Name: ,
Stackeffect: n —
Attributes: ISO,FIG

Description: Store ‘n’ into the next available dictionary memory cell, advancing the dictionary
pointer .

See also: ‘DP’ ‘C,’

9.6.3 2,

Name: 2,
Stackeffect: d —
Attributes: ISO,FIG

Description: Store the most significand cell of ‘d” into the next available dictionary cell, advanc-
ing the dictionary pointer , then the least significand one. .

See also: ‘DP’ ¢,’

9.6.4 >BODY
Name: >BODY
Stackeffect: dea — addr
Attributes: ISO

Description: Given the dictionary entry address ‘dea’ of a definition created with a CREATE /
DOES> construct, return its data field (in the ISO sense) ‘addr’.

See also: ‘77 ‘>CFA’ ‘>DFA’ ‘>PHA’ ‘BODY>’ ‘DATA’

9.6.5 ALLOT
Name: ALLOT
Stackeffect: n —
Attributes: ISO,FIG

Description: Add the signed number to the dictionary pointer DP . May be used to reserve
dictionary space or re-origin memory. As the Pentium is a byte-addressable machine ‘n’ counts
bytes.

See also: ‘HERE’ ‘,’

9.6.6 BODY>
Name: BODY>
Stackeffect: addr — dea
Attributes:

Description: Convert the data field ‘addr’ of a definition created with a CREATE / DOES> construct
to its ‘dea’. (‘addr’ is not a header data field address) Where >BODY keeps working for a copy
of the header, BODY> does not. There is some logic to this, because the dea to which the body
belongs is no longer unique.

See also: ‘?’ ‘>BODY’

80 ciforth manual

9.6.7 C,

Name: C,
Stackeffect: b —
Attributes: ISO,FIG

Description: Store the least significand bits of ‘b’ into the next available dictionary byte, ad-
vancing the dictionary pointer .

See also: ‘DP’ ¢,’

9.6.8 DP

Name: DP
Stackeffect: — addr
Attributes: FIG,U,L

Description: A user variable, the dictionary pointer , which contains the address of the next
free memory above the dictionary. The value may be read by HERE and altered by ALLOT .

9.6.9 FIND

Name: FIND

Stackeffect: addr —xt 1/xt -1/addr 0
Attributes: ISO,WANT

Description: For the old fashioned string (stored with a preceding character count) at ‘addr’
find a Forth word in the current search order. Return its execution token ‘xt’. If the word is
immediate, also return 1, otherwise also return -1. If it is not found, leave the original ‘addr’
and a zero. In ciforth the alternative FOUND is used, that uses a regular stringconstant , hence
this is a loadable extension.

See also: ‘FOUND’ ‘CONTEXT’ ‘PRESENT’ ‘(FIND)’

9.6.10 FORGET
Name: FORGET
No stackeffect
Attributes: ISO,FIG,E

Description: Executed in the form: FORGET ‘cccc’ Deletes definition named ‘cccc’ from the
dictionary with all entries physically following it. Recover the space that was in use.

See also: ‘FENCE’ ‘FORGET-VOC’

9.6.11 FOUND
Name: FOUND
Stackeffect: sc — dea
Attributes:

Description: Look up the string ‘sc’ in the dictionary observing the current search order. If
found, leave the dictionary entry address ‘dea’ of the first entry found, else leave a nil pointer. If
the first part of the string matches a denotation word, that word is found, whether the denotation
is correct or not. The dea allows to retrieve all properties of the word such as whether it is
immediate.

See also: ‘PP’ ‘FIND’ ‘PRESENT’ ‘CONTEXT’ ‘(FIND)’ ‘PREFIX’

Chapter 9: Glossary 81

9.6.12 HERE

Name: HERE

Stackeffect: — addr

Attributes: ISO,FIG

Description: Leave the address ‘addr’ of the next available dictionary location.
See also: ‘DP’

9.6.13 ID.

Name: ID.
Stackeffect: dea —
Attributes:

Description: Print a definition’s name from its dictionary entry address. For dummy entries
print nothing.

See also: ‘?’ ‘>FFA’ ‘>NFA’

9.6.14 IMMEDIATE

Name: IMMEDIATE
No stackeffect
Attributes:

Description: Mark the most recently made definition so that when encountered at compile time,
it will be executed rather than being compiled, i.e. the immediate bit in its header is set. This
method allows definitions to handle special compiling situations, rather than build them into the
fundamental compiler. The user may force compilation of an immediate definition by preceding
it with POSTPONE .

9.6.15 PAD

Name: PAD
Stackeffect: — addr
Attributes: ISO,FIG

Description: Leave the address of the text output buffer, which is a fixed offset above HERE .
The area growing downward from PAD is used for numeric conversion. The use of PAD is reserved
for applications.

9.6.16 PREFIX

Name: PREFIX
No stackeffect
Attributes:

Description: Mark the most recently made definition a prefix . If searching the wordlists for a
name that starts with the prefix, the prefix is a match for that name. This method allows to
define numbers, and other denotation ’s such as strings, in a modular and extensible fashion.
A prefix word finds the interpreter pointer pointing to the remainder of the name (or number)
sought for, and must compile that remainder. Some prefixes, like Prefix_7 , decrement the
parse pointer by one before starting to parse. Prefix words are mostly both immediate and
smart , i.e. they behave differently when compiled, than interpreted. The result is that the
compiled code looks the same and behaves the same than the interpreted code. Postponing
prefix words voids your warranty. It is recommended that the only smart words present are
prefix words.

See also: ‘PP@Q@’ ‘IMMEDIATE’ ‘Prefix_0’ ‘ONLY’

82 ciforth manual

9.6.17 PRESENT
Name: PRESENT
Stackeffect: sc — dea
Attributes:

Description: If the string ‘sc’ is present as a word name in the current search order, return its
‘dea’, else leave a nil pointer . For a denotation word, the name must match ‘sc’ exactly.

See also: ‘FOUND’ ‘CONTEXT’ ‘(FIND)’ ‘NAMESPACE’ ‘FIND ’

9.6.18 WORDS

Name: WORDS

No stackeffect

Attributes: ISO

Description: List the names of the definitions in the topmost word list of the search order.
See also: ‘CONTEXT’

9.6.19 []

Name: [’]
Stackeffect: — addr
Attributes: ISO,I

Description: Used in the form:

[[’] nnnn

In compilation mode it leaves the execution token (equivalent to the dictionary entry address)
of dictionary word ‘nnnn’. So as a compiler directive it compiles the address as a literal. If the
word is not found after a search of the search order an appropriate error message is given. It is
recommended that where you can’t use a denotation , or don’t want to, you use a combination
of NAME and FOUND (or WORD and FIND) instead.

See also: ‘FOUND’ ¢’ ‘EXECUTE’

9.6.20 (FIND)

Name: (FIND)

Stackeffect: sc wid — sc dea
Attributes:

Description: Search down from the WID ‘wid’ for a word with name ‘sc’. A WID is mostly a
dummy dea found in the data field of a namespace, fetched from CURRENT or an other wid in
the search order . Leave the dictionary entry address ‘dea’ of the first entry found, else leave a
zero. Do not consume the string ‘sc’, as this is a repetitive action.

See also: ‘““MATCH’ ‘FOUND’ ‘PRESENT’ ‘>WID’

9.6.21 >CFA
Name: >CFA
Stackeffect: dea — addr
Attributes:

Chapter 9: Glossary 83

Description: Given a dictionary entry addres ‘dea’ return its code field address ‘addr’. By
jumping indirectly via this address the definition ‘dea’ is executed. In ciforth it has offset 0, so
it is actually the same as the dea .

See also: ‘Prefix_’’ ‘HEADER’

9.6.22 >DFA
Name: >DFA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return its data field address ‘addr’ . This contains
a pointer to the code for a code word, to the data for a word defined by VARIABLE or DATA ,
to the high level code for a colon-definition, and to the DOES> pointer for a word build using
CREATE . Normally this is the area behind the header, found via >PHA .

See also: ‘Prefix_’’ ‘>BODY’ ‘HEADER’

9.6.23 >FFA

Name: >FFA

Stackeffect: dea — addr

Attributes:

Description: Given a dictionary entry addres return its flag field address ‘addr’ .

See also: ‘Prefix_’’ ‘HEADER’ ‘IMMEDIATE’ ‘PREFIX’

9.6.24 >LFA
Name: >LFA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return its link field address ‘addr’. It contains the
dea of the previous word.

See also: ‘Prefix_’’ ‘HEADER’

9.6.25 >NFA

Name: >NFA

Stackeffect: dea — nfa

Attributes:

Description: Given a dictionary entry addres return the name field address .

See also: ‘Prefix_’’ ‘HEADER’ ‘ID.’

9.6.26 >PHA
Name: >PHA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return the past header address . Here starts the
area that no longer belongs to the header of a dictionary entry, but most often it is owned by it.

See also: ‘Prefix_’’ ‘HEADER’ ‘>BODY’

84 ciforth manual

9.6.27 >SFA

Name: >SFA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return the source field address ‘addr’. If its content
is higher than 1000, that is a pointer to after the name of the definition in the source code. This
assumes that the source is still present in memory, which is true during development. If the
content is zero, it is a kernel word and the source is not available interactively. Otherwise it is
the block number from which the definition was compiled. No attempt is made to erase this
information when it becomes incorrect, for e.g. turnkey programs.

See also: ‘Prefix_’’ ‘HEADER’

9.6.28 >VFA
Name: >VFA
Stackeffect: dea — cfa
Attributes:

Description: Given the dictionary entry addres of a namespace return the address of the link to
the next namespace. Traditionally this was called vocabulary, hence the V.

See also: ‘NAMESPACE’ ‘>CFA’ ‘>WID’

9.6.29 >WID
Name: >WID
Stackeffect: dea — wid
Attributes:

Description: Given the dictionary entry addres ‘dea’ of a namespace return its WID ‘wid’, a
dummy dea that serves as the start of a dictionary search.

See also: ‘NAMESPACE’ ‘>VFA’ ‘(FIND)’

9.6.30 >XFA
Name: >XFA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return the extra field address ‘addr’ . This is a
field in the header that is free for an application to use for whatever purpose.

See also: ‘Prefix_’’ ‘OPT’ ‘HEADER’

9.6.31 FENCE
Name: FENCE
Stackeffect: — addr
Attributes: FIG,U

Description: A user variable containing an address below which FORGET ting is trapped. To
forget below this point the user must alter the contents of FENCE .

Chapter 9: Glossary 85

9.6.32 FOR-VOCS
Name: FOR-VOCS

Stackeffect: x1..xn xt — x1...xn

Attributes:
Description: For all vocabularies execute ‘xt’ with as data the dea of those words. ‘xt’ must
have the stack diagram ‘x1..xn dea --- x1..xn’

See also: ‘FOR-WORDS’ ‘EXECUTE’

9.6.33 FOR-WORDS

Name: FOR-WORDS

Stackeffect: x1...xn xt dea — x1...xn
Attributes:

Description: For all words starting with and including ‘dea’ execute ‘xt’ with as data ‘x1..xn’
plus the dea of those words by following the link fields. ‘xt’ must have the stack diagram ‘x1..xn
dea’ --- x1..xn’. Mostly the dea will identify a WID. In that case all words of a wordlist are
handled. If you don’t want to include the WID itself, you can ignore it based on the dummy
flag in its flag field. Note that you can use the dea of any word as a WID and the remainder of
the word list will be searched.

See also: ‘FOR-VOCS’ ‘EXECUTE’

9.6.34 FORGET-VOC
Name: FORGET-VOC
Stackeffect: addr wid — addr
Attributes:

Description: Remove all words whose dea is greater (which mostly means later defined) than
‘addr’ from a wordlist given by ‘wid’ . This works too if links have been redirected, such that
some earlier words point back to later defined words. Leave ‘addr’ (as FORGET-VOC is intended
to be used with FOR-VOCS) . If any whole namespace is removed, the search order is reset to
‘ONLY FORTH’. The space freed is not recovered.

See also: ‘FORGET’

9.6.35 HIDDEN

Name: HIDDEN
Stackeffect: dea —
Attributes:

Description: Make the word with dictionary entry address ‘dea’ unfindable, by toggling the
"smudge bit" in a definitions’ flag field. If however it was the ‘dea’ of an unfindable word, it
is made findable again. Used during the definition of a colon word to prevents an uncompleted
definition from being found during dictionary searches, until compiling is completed without
error. It also prevents that a word can be used recursively.

See also: ‘IMMEDIATE’ ‘RECURSE’

9.6.36 OPT

Name: OPT

Stackeffect: sc dea — sc deal
Attributes:

Description:

86 ciforth manual

This is a vector in behalf of optimisation, that starts as a noop, and can be filled in if the
extra field is used for optimisation. It must adhere to the following specification: Search down
from the dea ‘dea’ for a word with name ‘sc’. Replace ‘dea’ with ‘deal’ if the dictionary part
between both could not contain the name searched for. ‘deal’ being a null pointer means that
the dictionary doesn’t contain the name.

See also: ‘““MATCH’ ‘FIND’ ‘>XFA’

9.6.37 "MATCH

Name: “MATCH

Stackeffect: sc dea — sc dea n
Attributes:

Description: Intended to cooperate with (FIND) . Compares the string constant ‘sc’ with the
dea ‘dea’’s name, Returns into ‘n’ the difference between the first characters that compare
unequal, or zero if the strings are the same up to the smallest length. It is required that the dea
contains a pointer to a string variable, which may contain an empty string.

See also: ‘FOUND’ ‘CORA’

9.7 DOUBLE
The wordset ‘DOUBLE’ contains words that manipulate double ’s.

9.7.1 D+

Name: D+

Stackeffect: d1 d2 — dsum

Attributes: ISO,FIG

Description: Leave the double number ‘dsum’: the sum of two double numbers ‘d1’ and ‘d2’ .
See also: ‘DNEGATE’ ‘+’

9.7.2 DABS

Name: DABS

Stackeffect: d — ud

Attributes: ISO,FIG

Description: Leave the absolute value ‘ud’ of a double number ‘d’ .
See also: ‘DNEGATE’ ‘ABS’

9.7.3 DNEGATE

Name: DNEGATE

Stackeffect: d1 — d2

Attributes: ISO

Description: ‘d2’ is the negation of ‘d1’.

See also: ‘D+’

9.7.4 S>D
Name: S>D
Stackeffect: n — d
Attributes: ISO

Description: Sign extend a single number to form a double number.

Chapter 9: Glossary 87

9.8 ENVIRONMENTS

The wordset ‘ENVIRONMENTS’ contains all words of the ENVIRONMENT namespace and those words
needed to recognize them as Forth environment queries. Note that these are not environment
variables in the sense that they are passed from an operating system to a program.

9.8.1 CORE

Name: CORE

Stackeffect: — ff

Attributes: ISO

Description: An environment query whether the CORE wordset is present.

See also: ‘ENVIRONMENT?’

9.8.2 CPU
Name: CPU

Stackeffect: — d
Attributes: CI
Description: An environment query returning the cpu-type to be printed as a base-36 number.

See also: ‘ENVIRONMENT?’

9.8.3 ENVIRONMENT?
Name: ENVIRONMENT?
Stackeffect: sc — i*x true/false
Attributes: ISO

Description: If the string ‘sc’ is a known environment attribute, leave into ‘i*x’ the information
about that attribute and a true flag, else leave a false flag. In fact the flag indicates whether the
words is present in the ENVIRONMENT namespace and ‘i*x’ is what is left by the word if executed.

See also: ‘NAMESPACE’

9.8.4 NAME

Name: NAME

Stackeffect: — sc

Attributes: CI

Description: An environment query giving the name of this Forth as a string constant.

See also: ‘ENVIRONMENT?’

9.8.5 SUPPLIER
Name: SUPPLIER

Stackeffect: — sc

Attributes: CI

Description: An environment query giving the SUPPLIER of this Forth as a string constant.
See also: ‘ENVIRONMENT?’

88 ciforth manual

9.8.6 VERSION
Name: VERSION
Stackeffect: — sc
Attributes: CI

Description: An environment query giving the version "beta 2020Jun03" of this Forth as a string
constant.

See also: ‘ENVIRONMENT?’

9.9 ERRORS

The wordset ‘ERRORS’ contains words to handle errors and exceptions.

9.9.1 >ERROR
Name: >ERROR
Stackeffect: n — err
Attributes:
Description:
Assuming ‘n’ was returned by a windows CALL

turn it into a ciforth error code. If ‘n’ is zero or positive, this may mean okay. If it is negative,
it is indicates an error condition. This error is now combined with that fetched by LAST-ERROR
and negated. If this indicates no error, the original error is returned. If a library function looks
like c-compatible it probably follows this convention, but you have to look this up for each call.
A mnemonic for it is typed using ‘MESSAGE’.

See also: ‘CALL’ ‘ERROR’ ‘?ERROR’ ‘MESSAGE’

9.9.2 7TERROR
Name: 7ERROR
Stackeffect: fn —
Attributes:
Description:

If the boolean flag is true, signal an e