

The two basic configurations of operational amplifiers are "inverting" and "non-inverting"

The elementary operational amplifier is a 3 -terminal device, with 2 inputs and 1 output, (excluding power connections)

One of the inputs is called the inverting input, marked with a minus sign, the other input is the non-inverting Input, marked with a plus.

The output port can both sink and source either a voltage or a current

The ideal operational amplifier has infinite input impedance ($\mathrm{ZIN}=\infty$), meaning that no current flows into either of its two inputs

The ideal operational amplifier has zero output impedance (ZOUT = 0)

The ideal operational amplifier has zero input offset voltage V1 = V2

Op-amp configurations		
	Output Voltage	Output: Current
Input: Voltage	 VFA (Voltage Feedback Amplifier)	
Input: Current	 CFA (Current Feedback Amplifier)	 Current Amplifier

Additional properties

Key values of op-amps

Every op-amp has two inputs (+) and (-) and one output. Generally, it detects the difference between the input voltages $\mathrm{VD}=\mathrm{V}+-\mathrm{V}$ -

If $\mathrm{V}+>\mathrm{V}$ - then Vout increases, if $\mathrm{V}+<\mathrm{V}$ - then Vout decreases.
$v<0$: inverting, $v>0$ non-inverting
VFA: V+ and V- are high impedance voltage inputs, the output Vout behaves like a low impedance voltage source. Example: Texas Instruments OPA2356-EP

CFA: inverting input is low impedance, output Vout is a low-impedance voltage source. Example:
Analog Devices AD8014ARTZ-REEL7
OTA: Both inputs high impedance, output high impedance current source. Example:
ON Semiconductor NE5517DR2G
Current amplifier: low impedance inverted current input, high impedance current output

